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Chapter 1

Introduction

1.1 Historical background

Most fluid flows are turbulent rather than laminar and the reason why this is so has been the object of
study by several generations of investigators. One of the earliest explanations was that the laminar flow is
unstable, and the linear instability theory was first developed to explore this possibility. Such an approach
tells nothing about turbulence, or about the details of its initial appearance, but it does explain why the
original laminar flow can no longer exist. A series of early papers by Rayleigh (1880, 1887, 1892, 1895, 1913)
produced many notable results concerning the instability of inviscid flows, such as the discovery of inflectional
instability, but little progress was made toward the original goal. Viscosity was commonly thought to act
only to stabilize the flow, and flows with convex velocity profiles thus appeared to be stable. In a review
of 30 years of effort, Noether (1921) wrote: “The method of small disturbances, which can be considered
essentially closed, has led to no useful results concerning the origin of turbulence.”

Although Taylor (1915) had already indicated that viscosity can destabilize a flow that is otherwise stable,
it remained for Prandtl (1921), in the same year as Noether’s review paper, to independently make the same
discovery as Taylor and set in motion the investigations that led to a viscous theory of boundary-layer
instability a few years later (Tollmien, 1929). A series of papers by Schlichting (1933a,b, 1935, 1940), and
a second paper by Tollmien (1935) that resulted in a well-developed theory with a small body of numerical
results. Any expectation that instability and transition to turbulence are synonymous in boundary layers
was dashed by the low value of the critical Reynolds number Recr, i.e. the x Reynolds number at which
instability first appears. Tollmien’s value of Recr for the Blasius boundary layer was 60,000, and even in the
high turbulence wind tunnels of that time, transition was observed to occur between Ret = 3.5 × 105 and
1× 106. In what can be considered the earliest application of linear stability theory to transition prediction,
Schlichting (1933a) calculated the amplitude ratio of the most amplified frequency as a function of Reynolds
number for a Blasius boundary layer, and found that this quantity had values between five and nine at the
observed Ret.

Outside of Germany, the stability theory received little acceptance because of the failure to observe the
predicted waves, mathematical obscurities in the theory, and also a general feeling that a linear theory could
not have anything useful to say about the origin of turbulence, which is inherently nonlinear. A good idea of
the low repute of the theory can be gained by reading the paper of Taylor (1938) and the discussion on this
subject in the Proceedings of the 5th Congress of Applied Mechanics held in 1938. It was in this atmosphere
of disbelief that one of the most celebrated experiments in the history of fluid mechanics was carried out.
The experiment of Schubauer and Skramstad (1947), which was performed in the early 1940’s but not
published until some years later because of wartime censorship, completely reversed the prevailing opinion
and fully vindicated the Göttingen proponents of the theory. This experiment unequivocally demonstrated
the existence of instability waves in a boundary layer, their connection with transition, and the quantitative
description of their behavior by the theory of Tollmien and Schlichting. it made and enormous impact at
the time of its publication, and by its very completeness seemed to answer most of the questions concerning
the linear theory. To a large extent, subsequent experimental work on transition went in other directions,
and the possibility that linear theory can be quantitatively related to transition has not received a decisive
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experimental test. On the other hand, it is generally accepted that flow parameters such as pressure gradient,
suction and heat transfer qualitatively affect transition in the same manner predicted by the linear theory,
and in particular that a flow predicted to be stable by the theory should remain laminar. This expectation
has often been deceived. Even so, the linear theory, in the form of the e9, or N-factor, method first proposed
by Smith and Gamberoni (1956) and Van Ingen (1956), is today in routine use in engineering studies of
laminar flow control [see, e.g., Hefner and Bushnell (1979)]. A good introduction to the complexities of
transition and the difficulties involved in trying to arrive at a rational approach to its prediction can be
found in three reports by Morkovin (1968, 1978, 1983), and a review article by Reshotko (1976).

The German investigators were undeterred by the lack of acceptance of the stability theory elsewhere,
and made numerous applications of it to boundary layers with pressure gradients and suction. This work
is summarized by Schlichting (1979). We may make particular mention of the work by Pretsch (1942), as
he provided the only large body of numerical results for exact boundary-layer solutions before the advent of
the computer age by calculating the stability characteristics of the Falkner-Skan family of velocity profiles.
The unconvincing mathematics of the asymptotic theory was put on a more solid foundation by Lin (1945)
and Wasow (1948), and this work has been successfully continued by Reid and his collaborators (Lakin et
al., 1978).

When in about 1960 the digital computer reached a stage of development permitting the direct solution of
the primary differential equations, numerical results were obtained from the linear theory during the next ten
years for many different boundary-layer flows: three-dimensional boundary layers [Brown (1959), following
the important theoretical contribution of of Stuart in Gregory et al. (1955)]; free-convectoin boundary layers
(Kurtz and Crandall, 1962; Nachtsheim, 1963); compressible boundary layers (Brown, 1962; Mack, 1965b,
1969); boundary layers on complient walls (Landahl and Kaplan, 1965); a recomputations of Falkner-Skan
flows (Wazzan et al., 1968a); unsteady boundary layers (Obremski et al., 1969); and heated-wall water
boundary layers (Wazzan et al., 1968b). More recent work has focused on three-dimensional boundary
layers in response to the renewed interest in laminar-flow control for swept wings (Srokowski and Orszag,
1977; Mack, 1977, 1979a,b, 1981; Nayfeh, 1980a,b; Cebeci and Stewartson, 1980a,b; Lekoudis, 1979, 1980).
A notable contribution to linear stability theory that stands somewhat apart from the principal line of
development has been provided by Gaster (1968, 1975, 1978, 1981a,b, 1982a,b) in a series of papers on the
wave packets produced by a pulsed point source in a boundary layer. Gaster’s work on this problem also
includes a major stability experiment (Gaster and Grant, 1975).

There are a number of general references that are helpful to anyone interested in the linear theory. Review
articles are by Schlichting (1959); Shen (1964); Stuart (1963) and Reid (1965). Books are by Lin (1955);
Betchov and Criminale (1967), and Drazin and Reid (1981). Schlichting’s book on boundary-layer theory
(1979) contains two chapters on stability theory and transition, and Monin and Yaglom’s book on tubulence
(1971a; 1971b) contains a lengthy chapter on the same subject, as does the book by White (1974) on viscous
flow theory. Reviews of transition have been given by Dryden (1959); Tani (1969, 1981); Morkovin (1968,
1978, 1983) and Reshotko (1976). An extensive discussion of both stability theory and transition, not all at
high speeds in spite of the title, may be found in the recorded lectures of Mack and Morkovin (1971).

1.2 Elements of stability theory

Before we get into the main body of the subject, a brief introduction is in order to orient those who are
new to this field. The stability theory is mainly concerned with individual sine waves propagating in the
boundary layer parallel to the wall. These waves are waves of vorticity and are commonly referred to as
Tollmien-Schlichting waves, or TS waves, or simply as instability waves. The amplitude of the waves, which
vary through the boundary layer and die off exponentially in the freestream, are small enough so that a
linear theory may be used. The frequency of a wave is ω and the wavenumber is k = 2π/λ, where λ is the
wavelength. The wave may be two-dimensional, with the lines of constant phase normal to the freestream
direction (and parallel tot he wall), or it may be oblique, in which case the wavenumber is a vector ~k at
angle ψ to the freestream direction with streamwise (x) component α and spanwise (z) component β. The
phase velocity c is always less than the freestream velocity U1, so that at some point in the boundary layer
the mean velocity is equal to c. This point is called the critical point, or critical layer, and it plays a central
role in the mathematical theory. The wave amplitude usually has a maximum near the critical layer.
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Figure 1.1: Typical neutral-stability curves.

At any given distance from the origin of the boundary layer, or better, at any given Reynolds number
Re = U1x/ν, where ν is the kinematic viscosity, an instability wave of frequency ω will be in one of three
states: damped, neutral, or amplified. The numerical results calculated from the stability theory are often
presented in the form of diagrams of neutral stability which show graphically the boundaries between regions
of stability and instability in (ω,Re) space or (k,Re) space. There are two general kinds of neutral-stability
diagrams to be found, as shown in Fig. 1.1 for a two-dimensional wave in a two-dimensional boundary layer.
In this figure, the dimensionless wavenumber αδ is plotted against Rδ, the Reynolds number based on the
boundary-layer thickness δ. Waves are neutral at those values of αδ and Rδ which lie on the contour marked
neutral; they are amplified inside of the contour, and are damped everywhere else. With a neutral-stability
curve of type (a), all wavenumbers are damped at sufficiently high Reynolds numbers. In this case, the
mean flow is said to have viscous instability. Since decreasing Reynolds number, or increasing viscosity, can
lead to instability, it is apparent that viscosity does not act solely to damp out waves, but can actually
have a destabilizing influence. The incompressible flat-plate (Blasius) boundary layer, and all incompressible
boundary layers with a favorable pressure gradient, are examples of flows which are unstable only through
the action of viscosity. With a neutral-stability curve of type (b), a non-zero neutral wavenumber (αδ)s
exists at Re → ∞, and wavenumbers smaller than (αδ)s are unstable no matter how large the Reynolds
number becomes. A mean flow with a type (b) neutral-stability curve is said to have inviscid instability.
The boundary layer in an adverse pressure gradient is an example of a flow of this kind.

In both cases (a) and (b), all waves with αδ less than the peak value on the neutral-stability curve are
unstable for some range of Reynolds numbers. The Reynolds number Recr below which no amplification
is possible is called the minimum critical Reynolds number. It is often an objective of stability theory to
determine Recr, although it must be cautioned that this quantity only tells where instability starts, and
cannot be relied upon to indicate the relative instability of various mean flows further downstream. It is
definitely not proper to identify Recr with the transition point.

A wave which is introduced into a steady boundary layer with a particular frequency will preserve that

12



frequency as it propagates downstream, while the wavenumber will change. As shown in Fig. 1.1, a wave of
frequency ω which passes through the unstable region will be damped up to (Re)L, the first point of neutral
stability. Between (Re)L and (Re)U, the second neutral point, it will be amplified; downstream of (Re)U it
will be damped again. If the amplitude of a wave becomes large enough before (Re)U is reached, then the
nonlinear processes which eventually lead to transition will take over, and the wave will continue to grow
even though the linear theory says it should damp.

The theory can be used to calculate amplification and damping rates as well as the frequency, wavenumber
and Reynolds number of neutral waves. For example, it is possible to computer the amplification rate as
a function of frequency at a given Re. The neutral-stability curve only identifies the band of unstable
frequencies, but the amplification rate tells how fast each frequency is growing, and which frequency is
growing the fastest. Even more useful than the amplification rate is the amplitude history of a wave of
constant frequency as it travels through the unstable region. In the simplest form of the theory, this result
can be calculated in the form of a ratio of the amplitude to some initial amplitude once the amplification rates
are known. Consequently, it is possible to identify, given some initial disturbance spectrum, the frequency
whose amplitude has increased the most at each Reynolds number. It is presumably one of these frequencies
which, after it reaches some critical amplitude, triggers the whole transition process.

We have divided the following material into three major parts: the incompressible stability theory is in
Part I, the compressible stability theory is in Part II, and three-dimensional stability theory, both incom-
pressible and compressible, is in Part III. The field of laminar instability is a vast one, and many topics that
could well have been included have been left out for lack of space. We have restricted ourselves strictly to
boundary layers, but even here have omitted all flows where gravitational effects are important, low-speed
boundary layers with wall heating or cooling, and the important subject of Görtler instability. Within the
topics that have been included, we give a fairly complete account of what we consider to be the essential ideas,
and of what is needed to understand the published literature and make intelligent use of a computer program
for the solution of boundary-layer stability problems. Attention is concentrated principally on basic ideas,
but also on the formulations which are incorporated into computer codes based on the shooting-method of
solving the stability equations. Only selected numerical results are included, and these have been chosen
for their illustrative value, and not with any pretension to comprehensive coverage. Numerous references
are given, but the list is by no means complete. in particular, a number of USSR references have not been
included because of my unfamiliarity with the Russian language. Much use has been made of a previous
work (Mack, 1969), which is still the most complete source for compressible boundary-layer stability theory.
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Part I

Incompressible Stability Theory
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Chapter 2

Formulation of Incompressible
Stability Theory

2.1 Derivation of parallel-flow stability equations

The three-dimensional (3D) Navier-Stokes equations of a viscous, incompressible fluid in Cartesian coordi-
nates are

∂u∗i
∂t∗

+ u∗j
∂u∗i
∂x∗j

= − 1

ρ∗
∂p̄∗

∂x∗i
+ ν∗∇2U∗i , (2.1a)

∂u∗i
∂x∗i

= 0, (2.1b)

where u∗i = (u∗, v̄∗, w̄∗), x∗i = (x∗, y∗, z∗), and i, j = (1, 2, 3) according to the summation convention.
The asterisks denote dimensional quantities, and overbars denote time-dependent quantities. The velocities
u∗, v̄∗, w̄∗ are in the x∗, y∗, z∗ directions, respectively, where x∗ is the streamwise and z∗ the spanwise
coordinate; p̄∗ is the pressure; ρ∗ is the density; ν∗ is the kinematic viscosity µ∗/ρ∗, with µ∗ the viscosity
coefficient. Equations 2.1a are teh momentum equations, and Eq. 2.1b is the continuity equation. We first
put the equations in dimensionless form with the velocity scale U∗2r , the length scale L∗, and the pressure
scale ρ∗U∗2r Both L∗ and U∗r are unspecified for the present. The Reynolds number is defined as

R =
U∗rL

∗

ν∗
. (2.2)

The dimensionless equations are identical to Eqs. 2.1 except that ν∗ is replaced by 1/R, and ρ∗ is absorbed
into the pressure scale.

We next divide each flow variable into a steady mean-flow term (denoted by an upper-case letter) and
an unsteady small disturbance term (denoted by a lower-case letter):

U i(x, y, z, t) = Ui(x, y, z) + ui(x, y, z, t),

p̄(x, y, z, t) = P (x, y, z) + p(x, y, z, t). (2.3)

When these expressions are substituted into Eqs. 2.1, the mean-flow terms subtracted out, and the terms
which are quadratic in the disturbances dropped, we arrive at the following dimensionless linearized questions
for the disturbance quantities:

∂ui
∂t

+ uj
∂Ui
∂xj

+ Uj
∂ui
∂xj

= − ∂p

∂xi
+ ν∇2ui, (2.4a)

∂ui
∂xi

= 0. (2.4b)
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For a truly parallel mean flow, of which a simple two-dimensional example is a fully-developed channel
flow, the normal velocity V is zero and U and W are functions only of y. The parallel-flow equations, when
written out, are

∂u

∂t
+ U

∂u

∂x
+W

∂u

∂z
+ v

dU

dy
= −∂p

∂x
+ ν∇2u, (2.5a)

∂v

∂t
+ U

∂v

∂x
+W

∂v

∂z
= −∂p

∂y
+ ν∇2v, (2.5b)

∂w

∂t
+ U

∂w

∂x
+W

∂w

∂z
+ v

dW

dy
= −∂p

∂z
+ ν∇2w, (2.5c)

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0. (2.5d)

These equations are in separable form, i.e., they permit the normal mode solutions

[u, v, w, p]T = [û(y), v̂(y), ŵ(y), p̂(y)]T exp [i(αx+ βz − ωt)] (2.6)

where α and β are the x and z components of the wavenumber vector ~k, ω is the frequency, and û(y), v̂(y),
ŵ(y) and p̂(y) are the complex functions, or eigenfunctions, which gives the mode structure through the
boundary layer, and are to be determined by the ordinary differential equations given below. It is a matter
of convenience to work with the complex normal modes; the physical solutions are the real parts of Eqs. 2.6.
The normal modes are traveling waves in the x, z plane, and in the most general case, α, β, and ω are all
complex. If they are real, the wave is of neutral stability and propagates in the x, z plane with constant
amplitude1 and phase velocity c = ω/k, where k = (α2 + β2)1/2 is the magnitude of ~k. The angle of ~k with
respect to the x axis is ψ = tan−1(β/α). if any of α, β or ω are complex, the amplitude will change as the
wave propagates.

When Eqs. 2.6 are substituted into Eqs. 2.5, we obtain the following ordinary differential equations for
the modal functions:

i(αU + βW − ω)û+DUv̂ = −iαp̂+
1

R

[
D2 −

(
α2 + β2

)]
û, (2.7a)

i(αU + βW − ω)v̂ + = −Dp̂+
1

R

[
D2 −

(
α2 + β2

)]
v̂, (2.7b)

i(αU + βW − ω)ŵ +DWv̂ = −iβp̂+
1

R

[
D2 −

(
α2 + β2

)]
ŵ, (2.7c)

αû+ βŵ +Dv̂ = 0, (2.7d)

where D = d/dy. For a boundary layer, the boundary conditions are that at the wall the no-slip condition
applies,

û(0) = 0, v̂(0) = 0, ŵ(0) = 0, (2.8a)

and that far from the wall all disturbances go to zero,

û(y)→ 0, v̂(y)→ 0, ŵ(y)→ 0 as y →∞. (2.8b)

Since the boundary conditions are homogeneous, we have an eigenvalue problem and solutions of Eqs. 2.7
that satisfy the boundary conditions will exist only for particular combinations of α, β, and ω. The relation
for the eigenvalues, usually called the dispersion relation, can be written as

ω = Ω(α, β). (2.9)

There are six real quantities in Eq. 2.9; any two of them can be solved for as eigenvalues of Eqs. 2.7 and 2.8,
and the other four have to be specified. The evaluation of the dispersion relation for a given Reynolds
number and boundary-layer profile (U,W ) is the principal task of stability theory. The eigenvalues, along
with the corresponding eigenfunctions û, v̂, ŵ, and p̂, give a complete specification of the normal modes.
The normal modes, which are the natural modes of oscillation of the boundary layer, are customarily called
Tollmien-Schlichting (TS) waves, or instability waves.

1The term amplitude will always refer to the peak or rms amplitude, never to the instantaneous amplitude
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2.2 Non-parallel stability theory

Except for the asymptotic suction boundary layer, most boundary layers grow in the downstream direction,
and even for a wave of constant frequency α, β, û, v̂, ŵ, and p̂ are all functions of x (and z in a general 3D
boundary layer). What we have to deal with is a problem of wave propagation in a nonuniform medium.
Since the complete linearized equations 2.4 are not separable, they do not have the normal modes of Eq. 2.6 as
solutions. The most straightforward approach is to simply set the non-parallel terms to zero on the grounds
that the boundary-layer growth is small over a wavelength, and it is the local boundary-layer profile that
will determine the local wave motion. This approach, called the quasi- or locally-parallel theory, has been
almost universally adopted. It retains the parallel-flow normal modes as local solutions, but is, of course,
an extra approximation beyond linearization and leaves open the question of how important the admittedly
slow growth of the boundary layer really is. It also makes for difficulties in comparisons between theory and
experiment.

The first complete non-parallel theories were developed independently by (in order of journal publication
date) Bouthier (1972, 1973); Gaster (1974) and Saric and Nayfeh (1975). Gaster use the method of successive
approximations; the others used the method of multiple scales. There has been considerable controversy on
this subject, mainly because of the way in which (Saric and Nayfeh, 1975, 1977) chose to present their
numerical results, but it is now generally agreed that the three theories are equivalent. Gaster’s calculations
of neutral-stability curves for the Blasius boundary layer have since been verified to be correct by Van Stijn
and Van De Vooren (1983), and have the additional virtue of being based on quantities that can be measured
experimentally. The calculations show the non-parallel terms to have little effect on local instability except
at very low Reynolds numbers. However, this does not mean that non-parallel effects can be neglected when
dealing with waves over distances of many wavelengths.

In the multiple-scale theory, in addition to the usual “fast” x scale over which the phase changes, there
is a “slow” x scale, x1 = εx, where ε is a small quantity identified with 1/R. The slow scale governs the
boundary-layer growth, the change of the eigenfunctions, and a small additional amplitude modulation. The
disturbances are expressed in the form

u = u(0) + εu(1) + . . . , (2.10)

with similar expressions for v, w, and p. The mean flow is given by

U(x, y) = U (0)(x1) + . . . ,

W (x, y) = W (0)(x1) + . . . , (2.11)

V (x, y) = εV (0)(x1) + . . . .

Here the mean boundary layer is independent of z, and this is the only kind of boundary layer that we will
consider in this work. Examples are 2D planar boundary layers and boundary layers on a rotating disk, on
a cone at zero incidence and on the infinite-span swept wing.

When Eqs. 2.11 are substituted into Eqs. 2.4 and equal powers of ε collected, the zeroth-order equations
for u(0), v(0), w(0) and p(0) are identical to the parallel flow equations 2.5. The normal modes, however, have
the more general form

u(0)(x, y, z, t) = A(x1)û(0)(x1, y) exp [iθ(0)(x, z, t)], (2.12)

where the phase function is

θ(0)(x, z, t) =

∫ x

α(0)(x1) dx+ β(0)(x1)z − ω(0)(x1)t, (2.13)

and A(x1) is a complex amplitude modulation function. The dispersion relation also becomes a function of
x1:

ω(0) = Ω(0)(α(0), β(0);x1). (2.14)

The non-parallel theories as developed by Bouthier, Gaster, and Saric and Nayfeh calculate the dispersion
relation only to the zeroth order, just as in the quasi-parallel theory. The next order (ε1) enters only as a
solvability condition of the first-order equations. This condition determines the function A(x1).
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We shall use only the quasi-parallel theory in the remainder of this work. Consequently, all of the zeroth-
order quantities are calculated as functions of x in accordance with Eqs. 2.12, 2.13 and 2.14. However, the
quasi-parallel theory cannot determine the quantity A(x1) and this is simply set equal to the initial amplitude
A0. In the non-parallel theory, the product Aû is a unique quantity, independent of the normalization of the
eigenfunction û, that give a precise meaning to the amplitude of the flow variable û as a function of y and
permits direct comparisons of theory and experiment. In the quasi-parallel theory, only the contribution of
the amplitude that comes from the imaginary parts of α, β and ω can be accounted for. The corrections due
to the function A(x1) and the x dependence of eigenfunctions are outside of the scope of the theory. This
lack of physical reality in the the quasi-parallel theory introduces an uncertainty in the calculation of wave
amplitude and complicates comparisons with experiment. more on the use of the quasi-parallel theory can
be found in Section 2.6.

2.3 Temporal and spatial theories

If α and β are real, and ω is complex, the amplitude with change with time; if α and β are complex, and
ω is real, the amplitude will change with x. The former case is referred to as the temporal amplification
theory; the latter as the spatial amplification theory. If all three quantities are complex, the disturbance will
grow in space and time. The original, and for many years the only, form of the theory was the temporal
theory. However, in a steady mean flow the amplitude of a normal mode is independent of time and changes
only with distance. The spatial theory, which was introduced by Gaster (1962, 1963, 1965a,b), gives this
amplification change in a more direct manner than does the temporal theory.

2.3.1 Temporal amplification theory

With ω = ωr + iωi and α and β real, the disturbance can be written

u(x, y, z, t) = û(y) exp(ωit) exp

[
i

(∫ x

α dx+ βz − ωrt
)]

. (2.15)

The magnitude of the wavenumber vector ~k is

k =
√
α2 + β2, (2.16)

and the angle between the direction of the ~k and the x axis is

ψ = tan−1

(
β

α

)
. (2.17)

The phase velocity c, which is the velocity with which the constant-phase lines move normal to themselves,
has the magnitude

c =
ωr
k
, (2.18)

and is in the direction of ~k. If A represents the magnitude of û at some particular y, say the y for which û
is a maximum, then it follows from Eq. 2.15 that

1

A

dA

dt
= ωi. (2.19)

We can identify ωi as the temporal amplification rate. Obviously A could have been chosen at any y, or
for another flow variable besides u, and Eq. 2.19 would be the same. It is this property that enables us to
talk about the “amplitude” of an instability wave in the same manner as the amplitude of a water wave,
even though the true wave amplitude is a function of y and the particular flow variable selected. We may
distinguish three possible cases:

ωi < 0 damped wave,

ωi = 0 neutral wave, (2.20)

ωi > 0 amplified wave.
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The complex frequency may be written

ω = kc̃ = k(c̃r + ic̃i). (2.21)

The real part of c̃ is equal to the phase velocity c, and kc̃i is the temporal amplification rate. The quantity
c̃ appears frequently (as c) in the literature of stability theory. However, it cannot be used in the spatial

theory, and since general wave theory employs only ~k and ω, with the phase velocity being introduced as
necessary, we shall adopt the same procedure.

2.3.2 Spatial amplification theory

In spatial theory, ω is real and the wavenumber components α and β are complex. With

α = αr + iαi, β = βr + iβi, (2.22)

we can write the normal modes in the form

u(x, y, z, t) = û(y) exp

[
−
(∫ x

αi dx+ βiz

)]
exp

[
i

(∫ x

αr dx+ βrz − ωt
)]

. (2.23)

By analogy with the temporal theory, we may define a real wavenumber vector ~k with magnitude

k =
√
α2
r + β2

r . (2.24)

The angle between the direction of ~k and the x axis is

ψ = tan−1

(
βr
αr

)
, (2.25)

and the phase velocity is

c =
ω

k
. (2.26)

It follows from Eq. 2.23 that
1

A

dA

dx
= −αi, (2.27)

and we can identify −αi as the amplification rate int eh x direction. In like manner, −βi is the amplification
rate int eh z direction. Indeed, the spatial amplification rate is a vector like the wavenumber vector with
magnitude

|σ| =
√
α2
i + β2

i , (2.28)

and angle

ψ̄ = tan−1

(
−βi
−αi

)
(2.29)

with respect to the x axis. The amplification rate −βi is at this point a free parameter, and its selection is
left for future consideration.

For the special boundary layer to be considered in this work (see page 17), we define a spatial wave to be
amplified or damped according to whether its amplitude increases or decreases in the x direction. Therefore,
the three possible cases which correspond to Eq. 2.20 are:

−αi < 0 damped wave,

−αi = 0 neutral wave, (2.30)

−αi > 0 amplified wave.
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2.3.3 Relation between temporal and spatial theories

A laminar boundary layer is a dispersive medium for the propagation of instability waves. That is, different
frequencies propagate with different phase velocities, so that the individual harmonic components of a group
of waves at one time will be dispersed (displaced) from each other at some later time. In a conservative
system, where energy is not exchanged between the waves and the medium, an overall quantity such as the
energy density or amplitude propagates with the group velocity. Furthermore, the group velocity can be
considered a property of the individual waves, and to follow a particular normal mode we use the group
velocity of that mode. Because of damping and amplification, instability waves in a boundary layer do not
constitute a conservative system, and the group velocity is in general complex. However, some of the ideas
of conservative systems are still useful. If we consider an observer moving at the group velocity of a normal
mode, the wave in the moving frame of reference will appear to undergo temporal amplification, while in the
frame at rest, it undergoes spatial amplification. Thus we can write

d

dt
= cr

d

dxg
, (2.31)

where in this argument cr is the magnitude of ~cr, the real part of the group velocity vector ~c, and xg is the
coordinate in the direction of ~cr. Therefore, if ωi is the temporal amplification rate, the spatial amplification
rate in the direction parallel to ~cr is immediately given to be

− (αi)g =
ωi
cr
. (2.32)

The problem of converting a temporal to a spatial amplification rate was first encountered by Schlichting
(1933a), who used the two-dimensional version of Eq. 2.32 without comment. The same relation was also
used later by Lees (1952), and justified on intuitive grounds, but the first mathematical derivation was given
by Gaster (1962) for the 2D case, and the relation bears his name. Gaster’s derivation is straightforward
and can be generalized to three dimensions with the result given above in Eq. 2.32. It is essential to note
that the Gaster relation is only an approximation that is valid for small amplification rates. Within the
approximation, the frequency and wavenumber of the spatial wave are the same as for the temporal wave.
If we use the complex group velocity in teh above derivation, we arrive at the separate transformations for
constant frequency and constant wavenumber obtained by Nayfeh and Padhye (1979) from another point of
view. In this approach, Eq. 2.32 corresponds to a transformation of constant wavenumber.

We can also make use of Eq. 2.32 to arrive at a useful result for spatial waves. The same argument that
led to Eq. 2.32 also applies to a component of the group velocity. Therefore,

− (αi)ψ̄ =
ωi
cr

cos(ψ̄ − φr), (2.33)

where −(αi)ψ̄ is the spatial amplification rate in the arbitrary direction ψ̄. The quantity φr is the real part
of the complex group velocity angle φ defined by

cx = c cosφ, cz = c sinφ, (2.34)

where cx and cz are the complex x and z components of ~c, and c is the complex magnitude of ~c. Eliminating
ωi/cr by Eq. 2.32, we arrive at

(αi)ψ̄ =
(αi)g

cos(ψ̄ − φr)
. (2.35)

This relation, which may appear rather obvious, is not a general relation valid for two arbitrary angles. It
is only valid when one of the two angles is φr. When both angles are arbitrary, a more complicated relation
exists and has been derived by Nayfeh and Padhye (1979). There is also a small change in ~k unless the
group-velocity angle is real. We might close this subject by noting that while the various Nayfeh-Padhye
transformation formulae use the complex group velocity, they too are not exact because the group velocity
is considered to be constant in the transformation. We recommend to the interested reader to examine the
instructive numerical examples given by Nayfeh and Padhye.
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2.4 Reduction to fourth-order system

Equations 2.7 constitute a sixth-order system for the variables û, v̂, ŵ, p̂, Dû, and Dŵ, as can be shown by
rewriting them as six first-order equations. This system may be reduced to fourth order for the determination
of eigenvalues. One approach is to multiply Eq. 2.7a by α and Eq. 2.7c by β and add, and then multiply
Eq. 2.7c by α and Eq. 2.7a by β and subtract, to arrive at the following system of equations for the variables
αû+ βŵ, v̂, αŵ − βû, and β:

i(αU + βW − ω)(αû+ βŵ) + (αDU + βDW )v̂ = −i(α2 + β2)p̂+
1

R
[D2 − (α2 + β2)](αû+ βŵ), (2.36a)

i(αU + βW − ω)v̂ = −Dp̂+
1

R
[D2 − (α2 + β2)]v̂, (2.36b)

i(αU + βW − ω)(αŵ − βû) + (αDW + βDU)v̂ =
1

R
[D2 − (α2 + β2)](αŵ − βû), (2.36c)

i(αû+ βŵ) +Dv̂ = 0, (2.36d)

where Eqs. 2.7b and 2.7d have been duplicated for convenience as Eqs. 2.36b and 2.36d. The point to note
is that Eqs. 2.36a, 2.36b, and 2.36d are a fourth-order system for the dependent variables αû + βŵ, v̂, and
p̂. The fourth variable of this system is αDÛ + βDŵ. The dependent variable αŵ − βû appears only in
Eq. 2.36c. Therefore, we may determine the eigenvalues from the fourth-order system, and if subsequently
the eigenfunctions û and ŵ are needed, they are obtained by solving the second order equation 2.36c.

2.4.1 Transformation to 2D equations - temporal theory

The above equations are the ones that we will use, but they also offer a basis to discuss some transforma-
tions that have been used in the past. If α and β are real, the interpretation of the equations is evident.
Equation 2.36a is the momentum equation in the direction parallel to ~k, and Eq. 2.36c is the momentum
equation in the direction normal to ~k in the x, z plane. Indeed, if we use the transformations

α̃Ũ = αU + βW, α̃W̃ = αW − βU, (2.37a)

α̃ũ = αû+ βŵ, α̃w̃ = αŵ − βû, (2.37b)

α̃2 = α2 + β2 (2.37c)

and leave ω, R, v̂, and ŵ unchanged, Eqs. 2.36 become

i(α̃Ũ − ω)ũ+DŨv̂ = iα̃p̂+
1

R
(D2 − α̃2)ũ, (2.38a)

i(α̃Ũ − ω)v̂ = −Dp̂+
1

R
(D2 − α̃2)v̂, (2.38b)

i(α̃Ũ − ω)w̃ +DW̃ v̂ =
1

R
(D2 − α̃2)w̃, (2.38c)

iα̃ũ+Dv̂ = 0. (2.38d)

(2.38e)

These transformed equations are of the form of Eqs. 2.7 for a two-dimensional wave (β = 0) in a two-
dimensional boundary layer (W = 0) except for the presence of Eq. 2.38c. We may observe from Eq. 2.7c
that even with β = 0, a ŵ velocity component will exist whenever there is a W because of the vorticity
production term DWv̂.

This in a 3D boundary layer with velocity profiles (U,W ) at Reynolds number R, the eigenvalues of an
oblique temporal wave can be obtained from the eigenvalues of a 2D wave of the frequency in a 2D boundary
layer at the same Reynolds number with the velocity profile of the 3D boundary layer in the direction of
the wavenumber vector. The key result that it is the latter velocity profile that governs the instability was
obtained by Stuart (Gregory et al., 1955) in his classic study of the stability of three-dimensional boundary
layers, and by Dunn and Lin (1955) (see also Lin (1955)) in their study of the stability of compressible
boundary layers. We shall refer to this velocity profile as the directional profile.
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A slightly different transformation was employed by Squire (1933) and bears his name. Squire’s original
transformation was for a 2D boundary layer and the Orr-Sommerfeld equation (see Section 2.5.1),

Ũ = U +W tanψ, W̃ = W − U tanψ, (2.39a)

ũ = û+ ŵ tanψ, w̃ = ŵ − û tanψ, (2.39b)

α̃ = α2 + β2,
ω̃

α̃
=
ω

α
, α̃R̃ = αR (2.39c)

p̃

α̃2
=

p

α2
,

ṽ

α̃
=
v

α
. (2.39d)

When Eqs. 2.39 are substituted into Eqs. 2.36, the resultant equations are the same as Eqs. 2.38 except
that ω, R, v̂, and p̂ are replaced by the corresponding tilde quantities. Thus the transformed equations,
except for the w̃ equation which does not enter the eigenvalue problem, are again in 2D form, but now the
Reynolds number ahs also been transformed to the new coordinate system. This transformation relates the
eigenvalues of an oblique temporal wave of frequency ω in a 3D boundary layer with velocity profiles (U,W )
at Reynolds number R to a 2D wave of frequency ω/ cosφ in a 2D boundary layer at Reynolds number
R cosψ with velocity profile U + W tanψ. It can be interpreted as the same rotation of coordinates as the
transformation of Eq. 2.37 plus the redefinition of the reference velocity from U∗r to U∗r cosψ.

For a 3D boundary layer, the generalized Squire transformation is merely a different way of doing what
has already been accomplished by Eqs. 2.36. However, for a two-dimensional boundary layer (W = 0),
which was the case considered by Squire, Ũ = U and the dimensionless velocity profile is unchanged by the
transformation. This means that numerical stability results for oblique temporal waves can be immediately
obtained from known results for 2D waves in the same velocity profile. Furthermore, since R̃ = R cosψ, the
smallest Reynolds number at which a wave of any frequency becomes unstable (minimum critical Reynolds
number) must always occur for a 2D wave. This is the celebrated Squire theorem. It applies only to the
minimum critical Reynolds number and not to the critical Reynolds number of a particular frequency, for
which instability may well occur first for an oblique wave. It should also be noted that the theorem applies
only to a self-similar boundary layer where the velocity profile is independent of R.

2.4.2 Transformation to 2D equations - spatial theory

When α and β are complex, the interpretation of the transformation equations 2.37 as a rotation of coor-
dinates is lost, because the transformed velocity profiles are complex. There is one exception, however. In
general, the quantity α/α̃, which for a temporal wave is cosψ, is complex. However, if αi/βi = αr/βr, that
is if the spatial amplification rate vector is parallel to the wavenumber vector, α/α̃ is still real and equal
to cosψ. Thus it would appear that the eigenvalues of a spatial wave could still be calculated from the 2D
equations in the tilde coordinates. Unfortunately, this expectation is not correct. When α and β are real,

α = α̃ cosψ, (2.40)

but there is no justification for applying Eq. 2.40 separately to the real and imaginary parts of a complex α
when α/α̃ is complex. We are able, however, to derive the correct transformation rule from Eq. 2.35. With
ψ̃ = ψ and α̃i = (αi)ψ,

(−αi)g = −α̃i cos(ψ − φr), (2.41a)

and with ψ = 0,

− αi =
(−αi)g
cosφr

. (2.41b)

Eliminating (−αi)g, we obtain

− αi = −α̃i
cos(ψ − φr)

cosφr
. (2.41c)

Consequently, Eq. 2.40 can be used for αi only when the real part of the group-velocity angle is zero. There
is also a small shift in the wavenumber vector whenever φi 6= 0.

An alternative procedure for spatial waves is to use the equations that result from the transformations of
Eq. 2.39, but to not invoke Eq. 2.40 when α/α̃ is complex. The quantities R̃ and ω̃ are complex, as are Ũ and
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W̃ for a 3D boundary layer, but this causes no difficulty in a numerical solution. Such a procedure, which
amounts to a generalized complex Squire transformation, was incorporated into the JPL viscous stability
code VSTAB/VSP. The approach with Eqs. 2.36, which has the advantage that no transformations are
needed in determining the eigenvalues, is used in the newer JPL stability codes VSTAB/3D, VSTAB/AF,
and SFREQ/EV. It should be noted that even in the spatial theory, the governing real velocity profile is the

profile in the direction of ~k.

2.5 Special forms of the stability equations

2.5.1 Orr-Sommerfeld equation

A single fourth-order equation can be derived from Eqs. 2.36 by eliminating αû+βŵ from Eq. 2.36a by 2.36d,
and, after differentiation, eliminating Dp̂ by 2.36b. The result is

[D2 − (α2 + β2)]2v̂ = iR{(αU + βW − ω)[D2 − (α2 + β2)]− (αD2U + βD2W )}v̂, (2.42)

with boundary conditions

v̂(0) = 0, Dv̂(0) = 0,

v̂(y)→ 0, Dv̂(y)→ 0 as y → 0. (2.43)

When W = 0, Eq. 2.42 reduces to the equation for a 2D boundary layer obtained by Squire (1933). When
in addition β = 0,

(D2 − α2)2v̂ = iR[(αU − ω)(D2 − α2)− αD2U ]v̂ (2.44)

This is the Orr-Sommerfeld equation and is the basis for most of the work that has been done in incompress-
ible stability theory. it is often derived from the vorticity equation, in which case v̂ is the eigenfunction of
the stream function. The Orr-Sommerfeld equation is valid for a two-dimensional wave in a two-dimensional
boundary layer. However, the generalized Squire transformation, Eq. 2.39, reduces the 3D equation 2.42
to Eq. 2.44 in the tilde coordinates. Consequently, for 3D boundary layers all oblique temporal waves can
be obtained by solving a 2D problem for the renormalized velocity profile in the direction of the wave
number vector, and when the boundary layer is two-dimensional, for the same velocity profile. The 2D
Orr-Sommerfeld equation and the same transformation can also be used for spatial oblique waves, but in
this case R is complex, and for a 3D boundary layer so is U . The inviscid form of the complex Squire
transformation was used by Gaster (1968) for an unbounded 2D shear flow, and the complete viscous form
by Gaster (1975) for a Blasius boundary layer. When one is not trying to make use of previously computer
two-dimensional eigenvalues, it is perhaps simpler to use Eq. 2.42 to calculate 3D eigenvalues as needed, thus
avoiding transformations in R and ω.

2.5.2 System of first-order equations

There are a number of stability problems that cannot be reduced to a fourth-order system, and therefore are
not governed by the Orr-Sommerfeld equation. A more flexible approach is to work from the outset with a
system of first-order equations. With the definitions

Z1 = αû+ βŵ, Z2 = αDû+ βDŵ, Z3 = v̂, Z4 = p̂

Z5 = αŵ − βû, Z6 = αDŵ − βDû, (2.45)
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Eqs. 2.36 can be written as six first-order equations:

DZ1 = Z2, (2.46a)

DZ2 =
[
α2 + β2 + iR(αU + βW − ω)

]
Z1 +R(αDU + βDW )Z3 + iR

(
α2 + β2

)
Z4, (2.46b)

DZ3 = −iZ1, (2.46c)

DZ4 = − i

R
Z2 −

[
i(αU + βW − ω) +

α2 + β2

R

]
Z3, (2.46d)

DZ5 = Z6, (2.46e)

DZ6 = (αDW − βDU)RZ3 +
[
α2 + β2 + iR(αU + βW − ω)

]
Z5. (2.46f)

The boundary conditions are

Z1(0) = 0, Z3(0) = 0, Z5(0) = 0,

Z1(y)→ 0, Z3(y)→ 0, Z5(y)→ 0 as y →∞. (2.47)

The fact that the first four Eqs. 2.46 do not contain Z5 or Z6 confirms that eigenvalues can be obtained
from a fourth-order system even though the stability equations constitute a sixth-order system. It is only
the determination of all the eigenfunctions that requires the solution of the full sixth-order system. The
above formulation is applicable when α and β are complex as well as real, and to 3D as well as 2D boundary
layers. Only the transformations of Eq. 2.37b enter in this formulation, and then only in the definitions
of the dependent variables Z1, Z2, Z5 and Z6. No transformations are involved in determination of the
eigenvalues. Another point to note is that only the first derivatives of U and W appear in Eqs. 2.46 instead
of the second derivatives which are present in the Orr-Sommerfeld equation.

2.5.3 Uniform mean flow

In the freestream, the mean flow is uniform and Eqs. 2.46 have constant coefficients. Therefore, the solutions
are of the form

Z(i)(y) = A(i) exp(λiy), (i = 1, 6), (2.48)

where the Z(i) are the six-component solution vectors, the λi are the characteristic values (the term eigen-
value is reserved for the α, β, ω which satisfy the dispersion relation), and the A(i) are the six-component
characteristic vectors 9not to be confused with the wave amplitude A in Eq. 2.12). The characteristic values
occur in pairs, and are easily found to be

λ1,2 = ∓
(
α2 + β2

)1/2
, (2.49a)

λ3,4 = ∓
[
α2 + β2 + iR(αU1 + βW1 − ω)

]1/2
, (2.49b)

λ5,6 = λ3,4, (2.49c)

where U1 and W1 are the freestream values of U(y) and W (y). Only the upper signs satisfy the boundary
conditions at y →∞. The components of the characteristic vector A(1) are

A
(1)
1 = −i

(
α2 + β2

)1/2
, (2.50a)

A
(1)
2 = i

(
α2 + β2

)
, (2.50b)

A
(1)
3 = 1, (2.50c)

A
(1)
4 = i

αU1 + βW1 − ω
(α2 + β2)

1/2
, (2.50d)

A
(1)
5 = 0, (2.50e)

A
(1)
6 = 0. (2.50f)
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For real α, β and ω this solution is the linearized potential flow over a wavy wall moving in the direction
of the wavenumber vector with the phase velocity ω/k. It can be called the inviscid solution, although this
designation is valid only in the freestream.

The components of the characteristic vector A(3) are

A
(3)
1 = 1, (2.51a)

A
(3)
2 =

[
α2 + β2 + iR(αU1 + βW1 − ω)

]1/2
, (2.51b)

A
(3)
3 =

[
α2 + β2 − iR(αU1 + βW1 − ω)

]−1/2
, (2.51c)

A
(3)
4 = 0, (2.51d)

A
(3)
5 = 0, (2.51e)

A
(3)
6 = 0. (2.51f)

This solution represents a viscous wave and can be called the first viscous solution.
The characteristic vector A(5) is a second viscous solution and its components are

A
(5)
1 = 0, (2.52a)

A
(5)
2 = 0, (2.52b)

A
(5)
3 = 0, (2.52c)

A
(5)
4 = 0, (2.52d)

A
(5)
5 = 1, (2.52e)

A
(5)
6 = −

[
α2 + β2 + iR(αU1 + βW1 − ω)

]1/2
. (2.52f)

The three linearly independent solutions A(1), A(3) and A(5) are the key to the numerical method that we
will use to obtain the eigenvalues, as they provide the initial conditions for the numerical investigation.

We can observe that the second viscous solution can also be valid in the boundary layer as a pure mode if
Z1, Z3 and Z4 are all zero. This follows from Eqs. 2.46. In the notation of Eq. 2.37b, the only non-zero flow
variable, Z5, is α̃w̃, where in the temporal theory w̃ is the eigenfunction of the fluctuation velocity normal to
~k. But since η = ∂w/∂x− ∂u/∂z is the fluctuation vorticity component normal to the wall, Z5 is also −iη̂,
where η̂ is the eigenfunction of η. This interpretation is valid for both the temporal and spatial theories.
The eigensolutions of the second-order equation 2.46f with Z3 = 0 satisfy the boundary condition η̂(0) = 0
and give the vorticity modes in the boundary layer. These modes were first considered by Squire (1933),
and were proven by him to be always stable. Recently it was shown by Herbert (1983a,b) that the Squire
modes provide an important mechanism of subharmonic secondary instability at low, but finite, amplitudes
of a primary 2D instability wave.

2.6 Wave propagation in a growing boundary layer

We have already discussed some aspects of this problem in Section 2.2, and we have chosen to use the quasi-
parallel rather than non-parallel theory. In the quasi-parallel theory, the normal-mode solutions are of the
form

u(x, y, z, t) = A0û(y;x) exp[iθ(x, y, z, t)], (2.53)

with similar expressions for the other flow variables. The slowly varying amplitude A(x) of the nonparallel
solution Eq. 2.12 has been set equal to the constant A0, and

θ(x, z, t) =

∫ x

α(x) dx+ β(x1)z − ω(x1)t. (2.54)

Equation 2.54 is the same as Eq. 2.13. We have left β and ω as functions of the slow scale x1 in order
to make it clear that ∂θ/∂x = α, just as for strictly parallel flow. The eigenvalues α, β and ω satisfy
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the local dispersion relation Eq. 2.14 and the eigenfunction û(y;x) is also a slowly varying function of x.
Consequently, at each x a different eigenvalue problem has to be solved because of the change in the boundary
layer thickness, or velocity profiles, or, as is usually the case, both. The problem we must resolve is how
to “connect” the possible eigenvalues at each x so that they represent a continuous wave train propagating
through the growing boundary layer.

In a steady boundary layer, which is the only kind that we shall consider, the dimensional frequency of
a normal mode is constant. For a 2D wave in a 2D boundary layer, β = 0, and the complex wavenumber α
in the spatial theory, or the real wavenumber α and the imaginary part of the frequency ωi in the temporal
theory, are obtained as eigenvalues for the local boundary-layer profiles. The only problem here is the
relatively minor one of calculating the wave amplitude as a function of x from the amplification rate, adn
we shall discuss this in Section 2.6.2.

2.6.1 Spanwise wavenumber

When the wave is oblique, β 6= 0, and it is not obvious how to proceed. According to the dispersion relation,
α is a function of β as well as of x. How do we chose β at each x? The answer is provided by the same
procedure as used in conservative wave theory. When we differentiate Eq. 2.54 with respect to x (not x1)
and z, we obtain

∂θ

∂x
= α,

∂θ

∂z
= β, (2.55a)

or
∇θ = ~kc, (2.55b)

where ~kc is the complex vector wavenumber. This it follows directly that

~∇× ~kc = 0, (2.55c)

and ~kc is irrotational. This condition is a generalization to a nonconservative system of the well-known result
for the real wavenumber vector in conservative kinematic wave theory.

In the boundary layers we will consider here, the mean flow is independent of z. Consequently, if we
restrict ourselves to spatial waves of constant β at the initial x, they can be represented by a single normal
mode because the eigenvalue α will also be independent of z. Therefore, according to Eq. 2.55c the sought-
after downstream condition on β is

β = const. (2.56)

One caution is that if the reference length L∗ is itself a function of x, as it will be if L∗ = δ∗ for example,
the argument has to be slightly modified and Eq. 2.56 refers to β∗ rather than β.

It still remains to specify the initial value of β. naturally occurring instability waves in a boundary layer
will be a superposition of normal modes, with a spectrum over both ω and β that will depend on the particular
origin of the waves. It is probably only in a controlled experiment with a suitable wavemaker that a single
normal mode can be excited. For example, the vibrating ribbon first used by Schubauer and Skramstad
(1947) in their celebrated experiment excites a spatial 2D normal mode with the frequency of the ribbon. It
is also possible to conceive of wavemakers that excite single oblique normal modes in boundary layers which
are independent of z. Such normal modes will have an initial βr which matches that of the wavemaker, and,
because the wave can grow only in x, the initial βi must be zero. These normal modes are well-suited for use
in stability calculations for the estimation of the location of transition. In the calculations, βr is assigned as
a parameter, βi is zero, and Eq. 2.56 controls the downstream values of βr. Not only do these normal modes
represent physical waves that can be produced by a suitable wavemaker, but they are also convenient to
use in all calculations of normal modes, such as transition prediction, where we are interested in the largest
possible growth of any normal mode, or the point-source calculations of Chapter 7. In earlier work on two-
dimensional planar boundary layers, some results from which will appear in later sections, the angle ψ was
chosen as the parameter to hold constant, rather than βr, as the wave propagates downstream. Although
α∗r is nearly constant in such boundary layers, it changes enough so that the assumption of constant ψ is not
equivalent to Eq. 2.56. In the work on three-dimensional boundary layers presented in Chapters 13 and 14,
Eq. 2.56 is applied to the spanwise wavenumbers, but the direction of the spatial amplification rate is either
parallel to the local potential flow, or, occasionally, in the direction of the real part of the group-velocity
angle.
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2.6.2 Some useful formulae

It is worthwhile at this point to list some formulae that will be of use for stability calculations in growing
boundary layers. Only 2D boundary layers are considered here; 3D boundary layers are taken up separately
in Part III. First, we choose as the length scale,

L∗ =

√
ν∗x∗

U∗1 (x∗)
, (2.57)

which is the usual length scale of the Falkner-Skan family of boundary layers, and of many nonsimilar
boundary-layer solutions. Other length scales that have been used are the boundary layer thickness, the
displacement thickness, and the inverse unit Reynolds number. The velocity scale is U∗1 (x∗), the local velocity
at the edge of the boundary layer. With these choices, the Reynolds number in the stability equation is

R =
U∗1 (x∗)L∗

ν∗
=

√
U∗1x

∗

ν∗
=
√

Re. (2.58)

The dimensionless coordinate normal to the wall,

y =

(
y∗

x∗

)
R, (2.59)

is the usual independent variable of boundary layer theory.
The dimensionless quantities α, β, ω, R and y referenced to L∗ may be converted to other length

scales, such as displacement or momentum thickness, by multiplying by the dimensionless (with respect to
L∗) displacement or momentum thickness. The latter quantities are almost always obtained as part of a
boundary-layer calculation. To convert α, β and ω to dimensionless quantities based on the inverse unit
Reynolds number ν∗/U∗1 , it is only necessary to divide α, β and ω by R.

The dimensional circular frequency ω∗ of a normal mode is constant as the wave travels downstream, but
the dimensionless frequency

ω =
ω∗L∗

U∗1
, (2.60)

is a function of x. it has become almost standard to use

F =
ω∗ν∗

U∗21

=
ω

R
(2.61)

in place of ω as the dimensionless frequency. However, F is also a function of x for anything but a flat-plate
boundary layer. For the Falkner-Skan family of velocity profiles, the dimensionless velocity gradient,

m =
x∗

U∗1

dU∗1
dx∗

, (2.62)

is constant and related to the usual Hartree parameter βh (the subscript h is used to avoid confusion with
the waveanumber component β), by

βh =
2m

m+ 1
. (2.63)

The variable dimensionless frequency of constant ω∗ is

F (R) = F (R0)

(
R0

R

) 4m
m+1

, (2.64)

where R0 is the Reynolds number at the initial x station. When a stability code can handle several frequencies
at once, it is more convenient to use some fixed velocity as the reference velocity so that F will remain constant
for each frequency. For the nonsimilar boundary layers on airfoils, the JPL stability codes use the velocity
in the undisturbed freestream.
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With L∗ a function of x∗, the irrotationality condition Eq. 2.56 applies to the dimensional spanwise
wavenumber. For the Falkner-Skan family, the dimensionless β for constant β∗ is given by

β(R)

β(R0)
=

(
R

R0

) 1−m
1+m

. (2.65)

We note that for a Blasius boundary layer (m = 0), β increases linearly with R. The dimensional wavenumber
α∗r is almost, but not quite, constant, because there is a small increase in the phase velocity with increasing R.
As a result, the wave angle ψ increases as the wave travels downstream. This increase is at most a few degrees
for a planar a boundary layer. However, on an axisymmetric body, it is the circumferential wavenumber per
radian that is constant. Thus, neglecting the small decrease in α∗r , tanψ is inversely proportional to the
radius. For instance, on a cone, where the radius is increasing, an oblique wave is rapidly converted to a
nearly 2D wave as it travels downstream; on a body with decreasing radius, the effect is reversed.

2.6.3 Wave amplitude

In the quasi-parallel theory, the amplitude ratio of a spatial normal mode of frequency ω∗ with βi = 0 is
obtained from the imaginary part of the phase function Eq. 2.54:

ln

(
A

A0

)
= −

∫ x∗

x∗
0

α∗i dx
∗ (2.66)

in accord with Eq. 2.27. Here A0 is the amplitude at the intitial station x∗0, and the integral is evaluated
with constant ω∗ and β∗. if x∗0 is the start of the instability region for the frequency ω∗, ln(A/A0) is the
N factor that is the basis of the eN method of transition prediction. As discussed in Section 2.2, A may
represent any flow variable at any y location. It may be helpful to think of A as, say, the maximum value
of |û| in the boundary alyer, as this is a quantity that can be determined experimentally. Along with the
amplitude, the time-independent phase relative to the initial phase at x∗0, z

∗
0 is

χ(x)− χ(x0) =

∫ x∗

x∗
0

α∗r dx
∗ + β∗r (z∗ − z∗0) . (2.67)

The phase is a vital quantity in superposition calculations (Chapter 7), but otherwise it is usually not
computed.

For the Falkner-Skan family, the amplitude ratio in terms of R is

ln

(
A

A0

)
= − 2

m+ 1

∫ R

R0

αi dR, (2.68)

where the integrand αi is calculated as an eigenvalue with the F of Eq. 2.64 and the β of Eq. 2.65. For a
nonsimilar boundary layer, U∗1 (x∗) is not an analytical function, and the integration has to be with respect
to x∗. A formula that is used in the JPL stability codes is

ln

(
A

A0

)
= −Rc

∫ xc

(xc)0

αi
R

U∗1
U∗∞

dxc, (2.69)

where αi is based on the local L∗; U∗∞ is the velocity of the undisturbed freestream; xc is x∗/c∗h, where c∗h is
the chord; Rc = U∗∞c

∗
h/ν
∗ is the full chord Reynolds number; and the integral is again evaluated for constant

ω∗ and β∗.
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Chapter 3

Incompressible Inviscid Theory

The system of first-order equations 2.46, or the Orr-Sommerfeld equation in either 2D or 3D form, Eq. 2.42
or 2.44, governs the motion of linear waves at finite Reynolds numbers. With the highest derivative of
v̂ in the Orr-Sommerfeld equation multiplied by 1/R, which is usually a small quantity, it is apparent
that mathematical and numerical methods of some complexity are required to obtain the eigenvalues and
eigenfunctions. On the other hand, if viscosity is considered to act only in the establishment of the mean
flow, but to have a negligible effect on the instability waves, the equations take on a much simpler form. For
example, the 2D Orr-Sommerfeld equation reduces to[

(αU − ω)
(
D2 − α2

)
− αD2U

]
v̂ = 0. (3.1)

This is the fundamental equation of the inviscid stability theory, and is usually referred to as the Rayleigh
equation. It is of second order and so only the two boundary conditions

v̂(0) = 0, v̂(y)→ 0 as y →∞, (3.2)

can be satisfied. The normal velocity at the wall is zero, but the no slip condition is not satisfied.
The inviscid theory has dealt largely with 2D temporal waves. Since all of the essential ideas are included

within this framework, we shall adopt the same procedure in this Section. The Rayleigh equation 3.1 has a
singularity at y = yc where αU = ω. This singularity is of great importance in the theory, and is called the
critical layer, or critical point. It does not occur in the Orr-Sommerfeld equation, but even so the Rayleigh
equation is simpler to work with than the Orr-Sommerfeld equation, and an extensive inviscid stability theory
has been developed over the past 100 years. The early work was mainly by Rayleigh (1880, 1887, 1892, 1895,
1913), but a great number of authors have made contributions in more recent times. An excellent review
of the subject may be found in the article by Drazin and Howard (1966). Only those aspects of the theory
which are necessary for a general understanding, and have relevance to boundary-layer flows, will be taken
up in this Section. We also restrict ourselves to boundary layers with monotonic velocity profiles. These
profiles have only a single critical layer. We defer until Section 12 the discussion of the important directional
velocity profiles of 3D boundary layers which have two critical layers.

The inviscid theory has been used for two purposes. One is to provide two of the four independent
solutions that are needed in the asymptotic viscous theory. The other is an inviscid stability theory per
se. We shall not discuss the asymptotic theory, so it is only the second use that is of interest here. Not
many numerical results have been worked out from the inviscid theory for incompressible boundary layers.
However, one of the two chief instability mechanisms is inviscid in nature, so that some knowledge of the
theory is essential for an understanding of boundary-layer instability. The presentation here will also serve
as a necessary prelude to compressible stability theory, where the inviscid theory has a larger role to play.
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3.1 Inflectional instability

3.1.1 Some mathematical results

There are a number of general mathematical results that can be established in the inviscid theory, in contrast
to the viscous theory where few such results are known. We shall give two which demonstrate that no
unstable or neutral temporal waves can exist unless the velocity profile has a point of inflection. The first
result concerns unstable waves. If we multiply Eq. 3.1 by v̂∗, the complex conjugate of v̂, and then subtract
the complex conjugate of the resultant equation, we obtain

D (v̂∗Dv̂ − v̂Dv̂∗)− 2iωiD
2U |v̂|2

|αU − ω|2
= 0. (3.3)

The first term of Eq. 3.3 can be made more meaningful by relating it to the Reynolds stress, which, in
dimensionless form, is

τ = − α

2π

∫ 2π/α

0

uv dx. (3.4)

If we recall the necessity of first taking the real parts of u and v before multiplying, and make use of the
continuity equation, we obtain

Dτ =
ωiD

2U〈v2〉
|αU − ω|2

, (3.5)

where (1/2)|v̂|2e2ωit has been replaced by 〈v2〉, the average over a wavelength of the square of the velocity
fluctuation v.

Eq. 3.5 is a special case of a formula derived by Foote and Lin (1950) (see also Lin, 1954, 1955). When
Eq. 3.5 is integrated from y = 0 to infinity, the Reynolds stress at the wall and in the freestream is zero by
the boundary conditions. Therefore, since D2U = 0 in the freestream,

ωi

∫ yδ

0

〈v2〉D2U

|αU − ω|2
dy = 0, (3.6)

where yδ is the dimensionless boundary-layer thickness. It follows from Eq. 3.6 that if ωi 6= 0, D2U must
change sign somewhere in the interval 0 < y < yδ. Consequently, it has been proven that the velocity profile
must have a point of inflection for there to be an unstable wave. This result was first obtained by Rayleigh.
Later, Fjortoft (1950) strengthened Rayleigh’s necessary condition to D2U(U − Us) < 0 somewhere in the
flow, where Us is the mean velocity at the inflection point. This condition is equivalent to requiring that
the modulus of DU have a maximum for there to be an instability. It is always satisfied in a boundary
layer with an inflection point, because DU → 0 as y → ∞ and |DU | cannot have only a minimum. It
was subsequently proven by Tollmien (1935) that for most of the profiles which occur in boundary layers,
including 3D boundary layers, the condition D2U = 0 is also sufficient. Another result of Rayleigh, for which
the proof will not be given, established that the phase velocity of an unstable wave always lies between the
maximum and minimum values of U . This result was later generalized by Howard (1961) into an elegant
semicircle theorem which relates both ωr/α and ωi/α to the maximum and minimum values of U .

The second result concerns neutral waves. It follows from Eq. 3.5 that with ωi = 0, the Reynolds stress
must be constant everywhere except for a possible discontinuity at the critical layer yc. When Eq. 3.5
is integrated across the boundary layer, the only contribution to the integral comes from the immediate
neighborhood of yc. Hence,

τ (yc + 0)− τ (yc − 0) = −
(
D2U

DU

)
c

〈v2〉 lim
ωi→0

∫ U(yc+0)

U(yc−0)

ωi

(αU − ωr)2
+ ω2

i

dU. (3.7)

The integration variable has been changed from y to U . In the limit of ωi → 0, the integrand of Eq. 3.7 acts
as a delta function, and the integral has a value of π/α. Consequently,
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τ (yc + 0)− τ (yc − 0) =
π

α

(
D2U

DU

)
c

〈v2
c 〉. (3.8)

Since τ (yc + 0) and τ (yc − 0) are both zero by the boundary condition, D2Uc must also be zero, and it has
been proven that a wave of neutral stability can exist only when the velocity profile has a point of inflection.
Furthermore, ωr/α = Uc and the phase velocity of a neutral wave is equal to the mean velocity at the
inflection point.

The chief analytical feature of the Rayleigh equation 3.1 is the singularity at αU = ω. Since ω is in
general complex, so is yc. Of course the mean velocity U is real in the physical problem, but it may be
analytically continued onto the complex plane by a power-series expansion of U or by some other method.
Two approaches to obtaining analytical solutions of the inviscid equation are the power spectra series in α2

used by Heisenberg (1924) and Lin (1945), and the method of Frobenius used by Tollmien (1929). The two
solutions obtained by Tollmien are

v̂1(y) = (y − yc)P1 (y − yc) , (3.9a)

v̂2(y) = P2 (y − yc) +

(
D2U

DU

)
c

(y − yc)P1 (y − yc) log (y − yc) , (3.9b)

where

P1 (y − yc) = 1 +

(
D2U

2DU

)
c

(y − yc) +
1

6

[(
D3U

DU

)
c

+ α2

]
(y − yc)2

+ . . . ,

P2 (y − yc) = 1 +

[(
D3U

2DU

)
c

−
(
D2U

DU2

)
c

+
1

2
α2

]
(y − yc)2

+ . . . .

(3.10)

The first solution is regular, but v̂2 is not in general regular near yc because of the logarithmic term. However,
for a neutral wave D2Uc is zero, and in this one case v̂2 is also regular.

To summarize what we have learned in this section, for a velocity profile without an inflection point, (e.g.,
the Blasius boundary layer), there can be neither unstable nor neutral waves (save for the trivial solution
α = 0, ω = 0). When there is an inflection point, a neutral wave with a phase velocity equal to the mean
velocity at the inflection point can exist, and in boundary layers unstable waves with phase velocities between
0 and 1 can and will exist.

3.1.2 Physical interpretations

The mathematical theory is complete in itself, and with the use of the Reynolds stress also makes the
physical consequences of an inflection point clear. However, there have been attempts to formulate physical
arguments that in some manner bring in the concept of negative stiffness, which is the way one usually
thinks about unstable wave motions. The first of these was by Taylor (1915), and appeared as an addendum
to a major paper in which he developed his vorticity transfer theory. He applied this theory to deriving an
expression for the vertical transfer of disturbance momentum, which immediately showed that if D2U is of
the same sign everywhere, the disturbance momentum can only increase or decrease everywhere, a situation
incompatible with the inviscid boundary conditions. However, if D2U changes sign, then momentum can be
transferred from one place to another without affecting the boundaries, thus permitting instability. Later
arguments made use of vorticity concepts. The most detailed is by Lin (1945, 1955), and is supported by a
considerable mathematical development. Lighthill (1963, p. 92) gives a very helpful presentation with three
diagrams, and finally Gill (1965a) has constructed an argument that makes use of Kelvin’s (1880) cat’s-eye
diagram of the streamlines in the vicinity of an inflection point to demonstrate that only a maximum in DU
can cause instability. All of these presentations are worth careful study.

3.2 Numerical integration

The analytical methods are not adequate for producing numerical solutions of the Rayleigh equation except
in certain special cases. Only direct numerical integration of Eq. 3.1 can produce solutions accurately and
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quickly for the great variety of velocity profiles encountered in practice. There are at least two methods
available. In the first, which was developed by Conte and Miles (1959), the integration is restricted to the
real axis and is carried past the critical point by the Tollmien solutions. In the second method, which was
developed by Zaat (1958), the solution is produced entirely by numerical integration, and the critical point is
avoided by use of an indented contour in the complex plane. It is as easy to perform the numerical integration
along such a contour as along the real axis, provided the analytic continuation of U away from the real axis
is available. This approach, except for a difference in the method of analytic continuation, which was used
by Mack (1965a) to integrate the compressible inviscid equations. It was later extended to incompressible
flow, and is incorporated into the JPL inviscid stability code ISTAB.

For numerical integration, Eq. 3.1 is replaced by the two first-order equations for v̂ and p̂ which follow
from Eqs. 2.36 when R→∞:

Dv̂ =
α

αU − ω
(DUv̂ + iαp̂) , (3.11a)

Dp̂ = −i (αU − ω) v̂. (3.11b)

The solutions in the freestream, where U = 1 and DU = 0, are

v̂ = e−αy, (3.12a)

p̂ = −i
(

1− ω

α

)
e−αy, (3.12b)

where we have chosen the normalization to agree with Eqs. 2.50. These expressions provide the initial values
for the numerical integration to start at some y = y1 > yδ. For chosen values of α and ωr+iωi, the integration
proceeds from y1 to the wall along the real y axis and an indented rectangular contour around the critical
point when necessary. The velocity U is continued on to the indented contour by a power-series expansion in
y− yc. The necessary derivatives of U are obtained from the boundary-layer equations. A Newton-Raphson
search procedure, in which any two of α, ωr, ωi are perturbed, is used to find the eigenvalues, i.e., an α
and ωr + iωi for which the boundary condition v̂(0) = 0 is satisfied. If α is held constant, then the Cauchy-
Riemann equations can be used to eliminate one perturbation because the function Ω(α) in the dispersion
relation is analytic.

3.3 Amplified and damped inviscid waves

3.3.1 Amplified and damped solutions as complex conjugates

In the use of the inviscid theory in the asymptotic viscous theory, the choice of the branch of the logarithm
in Eq. 3.9b constitutes a major problem. The same difficulty also shows up in the inviscid theory itself, but
in a much less obvious manner. Since DU > 0 for the type of boundary layer we are considering in this
Section, it follows that for an amplified wave (ωi > 0) the critical layer lies above the real y axis [(yc)i > 0];
for a damped wave (ωi < 0) it is below the real axis [(yc)i < 0]. For a neutral wave (ωi = 0), the critical
layer is on the real axis, but since D2Uc = 0 the logarithmic term drops out of Eq. 3.9b and the solution
is regular. With the critical layer located off the real axis for amplified and damped waves, it would seem
that there is nothing to hinder integration along the real axis. Indeed, it can be seen by manipulating the
inviscid equation (3.1) that if v̂r + iv̂i is a solution for ωr + iωi, then v̂r − iv̂i is a solution for ωr − iωi. Thus
amplified and damped solutions are complex conjugates, and the existence of one implies the existence of
the other. From this point of view, the criterion for instability is that ω is complex, and the only stability
is neutral stability with ω real. Since Eq. 3.6 applies for ωi < 0 as well as for ωi > 0, neither amplified nor
damped waves can exist unless there is an inflection point. The Blasius boundary layer has no inflection
point (except at y = 0), and according to this argument no inviscid waves are possible, amplified, damped
or neutral (except for α = 0, ω = 0). But viscous solutions certainly exist; what happens to these solutions
in the limit as R→∞?
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3.3.2 Amplified and damped solutions as R→∞ limit of viscous solutions

The clarification of this point is due to Lin (1945), who showed that if the inviscid solutions are regarded
as the infinite Reynolds limit of viscous solutions, a consistent inviscid theory can be constructed in which
damped solutions exist that are not the complex conjugates of amplified solutions. To achieve this result,
integration along the real axis is abandoned for damped waves. Instead, the path of integration is taken
under the singularity just as it is for the inviscid solutions that are used in the asymptotic viscous theory,
and ln(y − yc) = ln |y − yc| − iπ for y < yc. For damped waves, the effect of viscosity is present even in the
limit R→∞, and a completely inviscid solution cannot be valid along the entire real axis. Lin’s arguments
were physical and heuristic, but a rigorous justification was given by Wasow (1948).

It is also possible to arrive at Lin’s result from a strictly numerical approach. In Section 3.2, no mention
was made of how to indent the contour of integration. The two possibilities are shown in Fig. 3.1. For an
inviscid neutral solution (ωi = 0), v̂ is purely imaginary and p̂ is real. It makes no difference if the contour is
indented below the real axis, as in Fig. 3.1a, or above, as in Fig. 3.1b. The same eigenvalue α is obtained in
either case. If ωi 6= 0, the integration can be restricted to the real axis. However, unless D2U = 0 somewhere
in the boundary layer, there are no amplified solutions, or their complex conjugates the damped solutions.
But if we use contour (a) for damped waves, and contour (b) for amplified waves, both solutions exist even
with D2U 6= 0. Some eigenvalues computed for the Blasius velocity profile are given in Table 3.1, where the
eigenvalues have been made dimensionless by reference to L∗ [Eq. 2.57], which enters the inviscid problem
through the boundary-layer similarity variable y = y∗/L∗. As can be verified from Eqs. 3.11, the solutions
with ωr − iωi and contour (a) are related to the solutions with ωr + iωi and contour (b) by

v̂(a) + iv̂(a) = v̂(b) − iv̂(b),

p̂(a) + ip̂(a) = −p̂(b) + ip̂(b).
(3.13)

Figure 3.1: Alternative indented contours for numerical integration of inviscid equations.

Which option do we pick, (a) or (b)? Since the neutral-stability curve for the Blasius profile is of the
type shown in Fig. 1.1a, waves of all wavenumbers are damped in the limit R → ∞. Consequently, if the
inviscid solutions are required to be the R→∞ limit of viscous solutions, it is evident that contour (a) must
be used, just as in the asymptotic theory and in agreement with Lin. Without an inflection point, there are
no inviscid amplified solutions. For a velocity profile with D2U = 0 at ys, where the subscript s refers to
the inflection point, both amplified and damped waves exist for each contour, unlike the Blasius case. The

33



Table 3.1: Inviscid eigenvalues of Blasius velocity profile computed with indented contours

Contour α ωr ωi × 103

(a) 0.128 0.0333 -2.33
(b) 0.128 0.0333 2.33
(a) 0.180 0.0580 -6.80
(b) 0.180 0.0580 6.80

neutral wavenumber is αs, and can be obtained with either contour. With contour (a), the wavenumbers of
the amplified waves are located below αs, and the wavenumbers of the damped waves are located above αs;
contour (b) gives the opposite results. Comparison with the viscous neutral-stability curve, which is of the
type shown in Fig. 1.1b, shows that contour (b) must be rejected in this case also.

The damped solutions with contour (a) do not exist everywhere on the real axis. According to Lin (1955,
p. 136), there is an interval of the real axis in the vicinity of the critical layer where viscosity will always have
an effect even in the limit of R→∞, and where the inviscid solution is not a valid asymptotic approximation
to the viscous solution. In the final paragraph of his book, Lin remarked that in this interval the viscous
solution has an oscillatory behavior. This remark was confirmed analytically by Tatsumi and Gotch (1971),
and verified numerically by Davey (1981) at an extremely high Reynolds number using the compound matrix
method.

As a numerical example of damped inviscid eigenvalues, Fig. 3.2 gives −ωi, the temporal damping rate,
as a function of α for the Blasius velocity profile. The calculation was performed along an indented contour
of type (a). The inviscid damping rates are, for the most part, much larger than the viscous amplification
rates. That damped inviscid eigenvalues calculated with a type (a) contour are the R→∞ limit of viscous
eigenvalues was confirmed numerically by Davey in the paper mentioned in the preceding paragraph. For
α = 0.179, the inviscid eigenvalue is ω/α = 0.32126 − 0.03671i; the viscous eigenvalue computed by Davey
at R = 1× 106 is ω/α = 0.32166− 0.03629i.

Figure 3.2: Inviscid temporal damping rate vs. wavenumber for Blasius boundary layer.
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Chapter 4

Numerical Techniques

4.1 Types of methods

Since the early 1960’s, the asymptotic theories developed by Tollmien (1929) and Lin (1945) have been largely
superseded as a means of producing numerical results in favor of direct solutions of the governing differential
equations on a digital computer. The numerical methods that have been employed fall roughly into three
categories: (1) finite-difference methods, used first by Thomas (1953) in his pioneering numerical work on
plane Poiseuille flow, and later by Kurtz (1961), Osborne (1967), and Jordinson (1970), among others;
(2) spectral methods, used first by Gallagher and Mercier (1962) for Couette flow with Chandrasekhar
and Reid functions, and later improved by Orszag (1971) with the use of Chebyshev polynomials; and
(3) shooting methods, used first by Brown and Sayre (1954). All of these methods have advantages and
disadvantages which show up in specialized situations, but they are all equally able to do the routine
eigenvalue computations required in transition-prediction calculations. However, a shooting method has
been used for almost all of the numerical results given in the present lectures, and it is this method that will
be described here.

4.2 Shooting methods

After the early work of Brown and Sayre (1954) and Brown (1959, 1960, 1961, 1962), computer codes for
boundary-layer problems that were also based on shooting methods were developed by Nachtsheim (1963),
Mack (1965a), Landahl and Kaplan (1965), Radbill and Van Driest (1966), Wazzan et al. (1968b), Davey
(1973), and Cebeci and Stewartson (1980a), among others. Most of these codes solve the Orr-Sommerfeld
equation; exceptions are the compressible stability code of Brown (1961), and the codes of Mack (1965a),
which were also originally developed for compressible flow and only later extended to incompressible flow.
Almost all of the codes have the feature that the numerical integration proceeds from the freestream to the
wall. The exceptions are the codes of Brown and of Nachtsheim (1963), where the integration proceeds in
the opposite direction [in a later report on plane Poiseuille flow, Nachtsheim (1964) used a method that
integrates in both directions].

Various integrators have been used to implement the shooting method. Perhaps the most common is
some form of the Runge-Kutta method, but the Adams-Moulton and Keller box method have also been used.
One choice that has to be made is whether to use a fixed or variable step-size integrator. The latter is better
in principle, but it adds to the computational overhead, and thus to the expense, and it may be as difficult
to construct a proper error test and then choose the error limits as it is to select the proper fixed step size. It
must also be remembered that the variable step-size methods do not really address the right problem. What
we are interested in is a certain accuracy of the eigenvalues and eigenfunctions, not in the per-step truncation
error of the independent solutions, which is what the variable step-size methods control. These methods
seem to require more integration steps than fixed step-size methods, which adds to the expense, and the
only compensation is to relieve the user of the need to select the step size. The JPL viscous stability codes
have used a fixed step-size fourth-order Runge-Kutta integrator for many years without ever encountering
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a problem that required a variable step-size integrator. A severe test of any integrator is to calculate the
discrete eigenvalue spectrum, because the higher viscous modes have rapidly oscillating eigenfunctions. The
fixed step-size integrator had little difficulty in calculating a number of additional temporal modes for plane
Poiseuille flow, and its ultimate failure in a portion of the complex ω/α plane for Blasius flow was caused
by a round-off error problem that apparently cannot be cured by any of the usual methods (Mack, 1976, p.
501).

The early applications of shooting methods suffered from the problem of parasitic error growth. This
growth arises because of the presence of a rapidly growing solution in the direction of integration that is
associated with the large characteristic value λ3 in the freestream, which the numerical round-off error will
follow. The parasitic error eventually completely contaminates the less rapidly growing solution, associated
with the characteristic value λ1 in the freestream. The essential advance in coping with this problem, which
had previously limited numerical solutions to moderate Reynolds numbers, was made by Kaplan and Moore
(1964). The Kaplan method “purifies” the contaminated solution by filtering out the parasitic error whenever
it becomes large enough to destroy the linear independence of the solutions. An illuminating presentation
and application of the Kaplan method may be found in Betchov and Criminale (1967). Three recent methods
that cope exceptionally well with the contamination problem are the Riccati method (Davey, 1977, 1979),
the method of compound matrices of Ng and Reid (1979, 1980), and the method of order reduction (Van
Stijn and Van De Vooren, 1982).

4.3 Gram-Schmidt orthonormalization

A widely used method, that was originally developed for systems of linear differential equations by Godunov
(1961) and Bellman and Kalaba (1965) and applied to the boundary-layer stability problem by Radbill
and Van Driest (1966) and Wazzan et al. (1968b), is that of Gram-Schmidt orthonormalization. This
method has the advantage that it is easier to generalize to higher-order systems than is the Kaplan filtering
technique. However, the geometrical argument often adduced in its support, that this procedure preserves
linear independence by keeping the solution vectors orthogonal, cannot be correct because the solution vector
space does not have a metric. In such vector spaces, vectors are either parallel or non-parallel; the concept
of orthogonality does not exist. Instead, the orthonormalization method works on exactly the same basis as
Kaplan filtering: the “small” solution is replaced by a linear combination of the “small” and “large” solutions
which is itself constrained to be “small”.

For the simplest case of a two-dimensional wave in a two-dimensional boundary layer, there are two
solutions, Z(1) and Z(3), each consisting of four components. In the freestream, Z(1) is the inviscid and Z(3)

is the viscous solution. Although this identification is lost in the boundary layer, Z(3) continues to grow
more rapidly with decreasing y than does Z(1). The parasitic error will follow Z(3), and when the difference
in the “magnitudes” of Z(3) and Z(1) as defined by an arbitrarily assigned metric becomes sufficiently large,
Z(1) will no longer be independent of Z(3). Well before this occurs, the Gram-Schmidt orthonormalization
algorithm is applied. The “large” solution Z(3) is normalized component by component to give the new
solution

S(3) =
Z(3)√{
Z(3)∗Z(3)

} , (4.1)

where an asterisk refers to a complex conjugate and {} to a scalar product. The metric adopted for the
vector space is the usual Euclidian norm. The scalar product of Z(1) and S(3) is used to form the vector

S(1) =

[
Z(1)∗ −

(
S(3)∗Z(1)

)
S(3)

]√(
S(1)∗S(1)

) , (4.2)

which replaces Z(1), and where S refers to the quantity in the numerator.
The numerical integration continues with S(1) and S(3) in place of Z(1) and Z(3), and when in turn

|S(3)| exceeds the set criterion of, say, 105 with single precision arithmetic and a 36 bit computer word, the
orthonormalization is repeated. With homogeneous boundary conditions at the wall, it makes no difference
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in the determination of the eigenvalues whether the Z(i) or S(i) are used. A linear combination of the two
solutions satisfies the β(0) = 0 boundary condition, but the v̂(0) = 0 boundary condition will in general not
be satisfied unless α, β, and ω satisfy the dispersion relation.

Although the orthonormalization procedure has no effect on the method of determining eigenvalues, it
does complicate the calculation of the eigenfunctions. The solution vectors of the numerical integration are
linear combinations of the original solution vectors Z(1) and Z(3), and it is necessary to “unravel” these
combinations. Two well-known applications of orthonormalization have been given by Conte (1966) and by
Scott and Watts (1977). The latter authors incorporated their method in the general purpose code SUPORT
that has been used in several stability investigations. A different procedure from either of these was worked
out for the JPL stability codes (1971), and is readily applicable to any order of differential equations.

4.4 Newton-Raphson search procedure

The Newton-Raphson method has been found to be satisfactory for obtaining the eigenvalues. The boundary
condition on Z(1) (or S(1)) is satisfied at the conclusion of each integration by a linear combination of the
two solutions at y = 0. In the spatial theory with ω and β fixed, the guess value of αr is perturbed by a
small amount and the integration repeated. Because v̂(0) is an analytic function of the complex variable α,
the Cauchy-Riemann equations

∂v̂i(0)

∂αi
=
∂v̂r(0)

∂αr
, (4.3a)

∂v̂r(0)

∂αi
= −∂v̂i(0)

∂αr
, (4.3b)

can be applied to eliminate the need for a second integration with αi perturbed. We may note that v̂(0)
is an analytic function of α even after orthonormalization with the usual definition of the scalar product,
remarks to the contrary in the literature notwithstanding.

The corrections δαr and δαi to the initial guesses αr and αi are obtained from the residual v̂(0) and the
numerical (linear) approximations to the partial derivatives by

∂v̂r(0)

∂αr
δαr −

∂v̂r(0)

∂αi
δαi = −v̂r(0), (4.4a)

∂v̂i(0)

∂αr
δαr −

∂v̂i(0)

∂αi
δαi = −v̂i(0), (4.4b)

The corrected αr and αi are used to start a new iteration, and the process continues until δαr and δαi have
been reduced below a preset criterion.
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Chapter 5

Viscous Instability

5.1 Kinetic-energy equation

The approach to instability theory based on the energy equation was originated by Reynolds (1895), and
has proven to be especially helpful in the nonlinear theory. An extended account of recent work has been
given by Joseph (1976). In the linear theory, the eigenmodes of the Orr-Sommerfeld equation already supply
us with complete information on the instability characteristics of any flow, so the energy method is mainly
useful as an aid to our physical understanding. We start by defining

e =
1

2

(
u2 + v2

)
(5.1)

to be the kinetic energy of a small 2D disturbance. When we multiply the dimensionless x and y parallel-flow
momentum equations by u and v, respectively, and add, we obtain(

∂

∂t
+ U

∂

∂x

)
e+ uv

dU

dy
= −u∂p

∂x
− v ∂p

∂y
+

1

R

(
u∇2u+ v∇2v

)
. (5.2)

If we integrate Eq. 5.2 from y = 0 to infinity and average over a wavelength, we find, for a temporal
disturbance,

∂E

∂t
=

∫ ∞
0

τ
dU

dy
dy − 1

R

∫ ∞
0

〈
ζ2
〉
dy, (5.3)

where E is the total disturbance kinetic energy per wavelength, τ = −〈uv〉 is the Reynolds stress, and

ζ =
∂u

∂y
− ∂v

∂x
(5.4)

is the z-component of the fluctuation vorticity. A derivation of Eq. 5.3 may be found in the review article
of Prandtl (1934, p. 180). The last term can be rewritten as∫ ∞

0

〈
ζ2
〉
dy = 2

∫ ∞
0

〈(
∂u

∂y

)2

+

(
∂v

∂x

)2
〉
dy +

∫ ∞
0

〈(
∂u

∂y
+
∂v

∂x

)2
〉
dy, (5.5)

which is more readily identified as the viscous dissipation. It is customary to write Eq. 5.3 as

∂E

∂t
= P̄ − D̄, (5.6)

where

P̄ =

∫ ∞
0

τ
dU

dy
dy (5.7a)

is the total energy production term over a wavelength, and
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D̄ =

∫ ∞
0

〈
ζ2
〉
dy (5.7b)

is the viscous dissipation. A disturbance will amplify, be neutral, or damp depending on whether P is greater
than, equal to, or less than D. Consequently, there can only be instability if τ is sufficiently positive over
enough of the boundary layer so that the production term can outweigh the dissipation term.

5.2 Reynolds stress in the viscous wall region

The inviscid theory gives the result that a flow with a convex velocity profile, of which the Blasius boundary
layer is an example, can support only damped instability waves. Originally the prevailing view was that
a flow that is stable in the absence of viscosity can only be more stable when viscosity is present. We see
from Eq. 3.8 that in a Blasius boundary layer, where D2U < 0, a wave of any phase velocity less than the
freestream velocity creates a positive Reynolds stress for y < yc. Therefore, the only way an instability wave
can exist is if the viscosity causes a positive Reynolds stress to build up near the wall. It was this possibility
that Taylor (1915) recognized, but his observation went unnoticed. A few years later, Prandtl (1921) was
led to the same idea, and calculated the Reynolds stress near the wall from a simple mathematical model.

It is of interest to note that Prandtl was moved to investigate the possibility of viscous instability by an
experiment in which he saw, or thought he saw, amplifying instability waves in a flow that was supposed to
be stable. In view of the importance of this discovery, we shall quote a few lines from his paper:

Previous mathematical investigations on the origin of turbulence ahve led to the opinion
that small disturbances of a viscous, laminar flow between two walls are always damped... In
order to learn how turbulence actually originates, I had built at Göttingen an open channel...and
observed the flow by the Ahlborn method (sprinkled lycopodium powder)... Wave forms with
slowly increasing amplitude were occasionally observed... These waves of increasing amplitude
contradicted the dogma of the stability of laminar motion with respect to small disturbances, so
that at first I tended to believe that I had not seen this infrequent phenomenon completely right.

We now applied ourselves to the theoretical treatment, and, to anticipate a little, we found,
contrary to the dogma, an instability of the small disturbances.

Prandtl’s argument was later refined by Lin (1954, 1955), but we shall follow essentially the original
derivation here. An inviscid wave is assumed to exist in the boundary layer, and viscosity to act only in a
narrow region near the wall. To simplify the analysis, U(y) is taken to be zero in this region. With this
assumption, the 2D dimensionless, parallel flow x momentum equation simplifies to

∂u

∂t
= −∂p

∂x
+

1

R

∂2u

∂y2
, (5.8)

where the terms vDU and ∂2u/∂x2 have been dropped. Outside of the wall viscous region, Eq. 5.8 reduces

∂u

∂t
= −∂p

∂x
. (5.9)

The disturbance velocity u consists of two parts: an inviscid part ui that satisfies Eq. 5.9, and a viscous part
uv that satisfies the difference between Eqs. 5.8 and 5.9. It is the total velocity u = ui +uv that satisfies the
no-slip boundary condition. Hence,

∂uv
∂t

=
1

R

∂2uv
∂y2

. (5.10)

The solution of Eq. 5.10 for ω real is

uv(y) = −ui(0) exp

[
−(1− i)y

√
ωR

2

]
exp[i(αx− ωt)], (5.11)

where the boundary conditions

u(0) = ui(0) + uv(0) and u(y)→ ui(y) as y →∞ (5.12)
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have been applied.
The additional longitudinal disturbance velocity uv, which is needed to satisfy the no-slip condition,

induces, through the continuity equation, an additional normal disturbance velocity.

vv(y) = −
y∫

0

∂uv
∂y

dy, (5.13)

which yields, upon substitution of Eq. 5.11,

vv(y) = (1− i)αui(0)

√
1

2ωR

{
exp

[
−(1− i)y

√
ωR

2

]
− 1

}
exp[i(αx− ωt)]. (5.14)

Outside of the viscous region (y →∞) vv is independent of y and uv is zero. From Eq. 5.14,

vv(∞) = −(1− i)
(
αui(0)√

2ωR

)
exp[i(αx− ωt)]. (5.15)

The consequences of Eq. 5.15 for the Reynolds stress are as follows. For an inviscid neutral disturbance,
u and v are 90◦ out of phase (see Eqs. 2.50a and 2.50c) and τ is zero. However, for any other disturbance u
and v are correlated, and there is a Reynolds stress. Since uv is zero outside of the wall viscous layer, it can
contribute nothing to the τ there. However, vv persists for some distance outside of the wall layer, and since
it is shifted 135◦ with respect to u, it will produce a Reynolds stress. This Reynolds stress must equal the
Reynolds stress set up by the disturbance in the vicinity of the critical layer, and which, in the absence of
viscosity, would extend to the wall. We have already derived a formula for this stress in Section 3.1 (Eq. 3.8).

The formula for the Reynold stress at the edge of the wall viscous region can be derived from Eq. 5.15.
We find

τe = −〈uivv〉 =
1

2

√
α

2ωR
[ui(0)]2. (5.16)

If the ratio τe/〈v2
v〉 is formed, we have

τe
〈v2
v〉

=
1

2α

√
2

ωR
. (5.17)

A general expression for τ in the wall viscous region can be obtained from Eqs. 5.11 and 5.14, and this
expression would give the increase of τ from zero at the wall to the value given by Eq. 5.17 at the edge of the
viscous region. However, Eq. 5.17 establishes the essential result that τ is positive, and thus viscosity acts as
Taylor thought it would, and builds up a Reynolds tress to match the inviscid Reynolds stress, or, in Taylor’s
precise view, permits the momentum of the disturbance to be absorbed at the wall. According to Eq. 5.7a,
with a positive stress energy will be transferred from the mean flow to the disturbance. consequently, the
wall viscous region, which is formed to satisfy the no-slip boundary condition for the disturbance, has the
effect of creating a Reynolds stress which acts to destabilize the flow. This mechanism must be present to
some extent for all disturbance, but whether a particular disturbance is actually amplified or damped will
depend on the magnitude and distribution of the Reynolds stress through the entire boundary layer, and on
the magnitude of the dissipation term.

As a note of caution, it must be recalled that the preceding analysis rests on the neglect of U in the
wall viscous region. Therefore, we can expect the results to be valid only at high values of R, when the wall
viscous region is thin compared to the boundary-layer thickness, and when the critical layer is outside of the
wall viscous region.

40



Chapter 6

Numerical Results - 2D Boundary
Layers

In this chapter, we shall present a number of numerical results which have been chosen to illustrate important
aspects of the theory, as well as the give an idea of the numerical magnitudes of the quantities we have been
discussing in the previous chapters.

6.1 Blasius boundary layer

The Blasius boundary layer, because of its simplicity, has received the most attention. The uniform external
flow means that not only is the boundary layer self-similar, but there is only a single parameter, the Reynolds
number. As there is no inflection point in the velocity profile, the only instability is viscous instability. Thus
we are able to study this form of instability without the competing influence of any other mechanism of
instability.

The first result of importance is the parallel-flow neutral stability curve for 2D waves, which is shown in
Fig. 6.1 as three separate curves for: (a) the dimensionless frequency F (Eq. 2.60); (b) the dimensionless
wavenumber α based on L∗ (Eq. 2.57); and (c) the dimensionless phase velocity c based on U∗1 . Normal
modes for which F , α and c lie on the curves are neutral; those for which F , α and c lie in the interior
of the curves are unstable; everywhere else the normal modes are damped. The neutral-stability curves
are a convenient means of identifying at each Reynolds number the F , α and c bands for which a wave
is unstable. Figure 6.1a also contains two additional curves which give the frequencies of the maximum
spatial amplification rate and of the maximum amplitude ratio A/A0, where A0 is the amplitude at the
lower-branch neutral point of the frequency in question. Both maxima are with respect to frequency at
constant Reynolds number. We have used σ in Fig. 6.1a to denote −αi, the spatial amplification rate in
teh streamwise direction, and will continue to do so in the remainder of this document. The corresponding
wavenumbers for the additional curves are given in Fig. 6.1b. The ratio of wavelength to boundary-layer
thickness is 2π/αryδ, and yδ, the y (Eq. 2.59) for which U = 0.999, is equal to 6.01. Consequently, the
unstable waves at R = 1000 have wavelengths between 5.55δ (19.4δ∗) and 14.1δ (49.2δ∗)1. According to
Fig. 6.1c, the unstable phase velocities at this Reynolds number are between 0.282U∗1 and 0.335U∗1 .

We must keep in mind that the neutral stability curves of Fig. 6.1 have been calculated from the quasi-
parallel theory, which does not distinguish between flow variables or location in the boundary layer. All
of the non-parallel neutral curves calculated by Gaster (1974) define a slightly greater unstable zone, with
the greatest differences coming at the lowest Reynolds numbers as might be expected. The difficulties
involved in making accurate measurements of wave growth at low Reynolds numbers have so far precluded
the experimental determination of what can be regarded as an unequivocally “correct” neutral-stability curve
for any flow variable.

1δ is the dimensional boundary-layer thickness, yδ is the dimensionless boundary-layer thickness δ/L∗, and, in accord with
the standard notation, δ∗ is the dimensional displacement thickness.
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Figure 6.1: Neutral-stability curves for Blasius boundary layer: (a) F vs. R; (b) αr vs. R; (c) c vs. R; −·−,
σmax; −−−, (A/A0)max; both maxima are with respect to frequency at constant R.
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Figure 6.2: Distribution of 2D spatial amplification rate with frequency in Blasius boundary layer at R = 600
and 1200.

Figure 6.3: Maximum 2D spatial amplification rates σmax and σ̂max as functions of Reynolds number for
Blasius boundary layer.
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Figure 6.4: 2D ln(A/A0) as function of R for several frequencies plus envelope curve; Blasius boundary layer.

The next quantity to examine is the dimensionless spatial amplification rate σ based on L∗. This am-
plification rate is shown in Fig. 6.2 for 2D waves as a function fo the dimensionless frequency F at the
two Reynolds numbers R = 600 and 1200. From the definition of the amplification rate in Eq. 2.27, the
fractional change in amplitude over a distance equal to one boundary-layer thickness is σyδ. Thus the most
unstable wave of frequency F = 0.33 × 10−4 at R = 1200 grows by 4.0% over a boundary-layer thickness.
The amplification rate based on ν∗/U∗1 , σ̂ = σ/R, gives the fractional wave growth over a unit increment in
Re. Thus this same wave grows by 5.6% over an increment in Re of 10,000.

The maximum amplification rates σmax and σ̂max, where the maxima are with respect to frequency (or
wavenumber) at constant Reynolds number, are shown in Fig. 6.3 as functions of Reynolds number. The
amplification rate σ̂, which gives the wave growth per unit of Reynolds number, peaks at the low Reynolds
number of R = 630. The amplification ate σ̂, which is proportional to the wave growth per boundary-
layer thickness, does not peak until until R = 2740 [calculated by Kümmerer (1973)]. The dimensional
amplification rate is proportional to σ̂ for a fixed unit Reynolds number. Figure 6.3 shows that the decline in
the dimensional amplification rate with increasing x-Reynolds number is almost counteracted by the increase
in Reynolds number. However, if the measure of viscous instability is taken to be the wave growth over a
fixed x∗ increment as expressed by σ̂, then by this criterion the maximum viscous instability occurs at low
Reynolds number.

The logarithm of the amplitude ratio, A/A0, is shown in Fig. 6.4 for 2D waves as a function of R for a
number of frequencies F . The envelope curve, which gives the maximum amplitude ratio possible at any
Reynolds number, is also shown in teh figure along with the corresponding frequencies. It is this type of
diagram that is used in engineering studies of boundary-layer transition. When ln(A/A0), which is often
called the N factor, reaches some predetermined value, say nine as suggested by Smith and Gamberoni
(1956), or ten as suggested by Jaffe et al. (1970), transition is considered to take place, or at least to start.

The distribution of the logarithm of the amplitude ratio with frequency is shown in Fig. 6.5 for several
Reynolds numbers. This figure illustrates the filtering action of the boundary layer. The simultaneous
narrowing of the bandwidth of unstable frequencies and the large increase in amplitude ratio as the Reynolds
number increases means that an initial uniform power spectrum of instability waves tends to a spectrum at
high Reynolds number that has a sharp peak at the most amplified frequency. The inset in Fig. 6.5 gives the
bandwidth, defined as the frequency range over which the amplitude ratio is within 1/e of the peak value,
as a function of Reynolds number.

The Squire theorem (section 2.4.1) has told us that it is a 2D wave that first becomes unstable. Fur-
thermore, at any Reynolds number it is a 2D wave that has the maximum amplification rate and also the
maximum amplitude ratio. Thus the envelope curve of amplitude ratio when all oblique waves are considered
as well as 2D waves is still as shown in Fig. 6.4. However, for a given frequency the 2D wave is not necessarily
the most unstable, as is shown in Fig. 6.6. In this figure, teh spatial amplification rate σ, calculated with
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Figure 6.5: Distribution of 2D ln(A/A0) with frequency at several Reynolds numbers, and bandwidth of
frequency response as a function of Reynolds number; Blasius boundary layer.

Figure 6.6: Effect of wave angle on spatial amplification rate at R = 1200 for F × 104 = 0.20, 0.25 and 0.30;
Blasius boundary layer.
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Figure 6.7: Complex group-velocity angle vs. wave angle at R = 1200 for F × 104 = 0.20 and 0.30; Blasius
boundary layer.

ψ = 0, is plotted against the wave angle ψ for three frequencies at R = 1200. At this Reynolds number,
the maximum amplification rate occurs for F = 0.33× 10−4. Above this frequency, 2D waves are certainly
the most unstable. However, below about 0.26× 10−4 and oblique wave is the most unstable, and the wave
angle of the maximum amplification rate increases with decreasing frequency.

In the calculations for Fig. 6.6, the complex wavenumber was obtained as a function of the spanwise
wavenumber βr with βi = 0 and the frequency real and constant. Thus the complex group-velocity angle φ
can be readily obtained from ∂α/∂βr (= tanφ), and the results are given in Fig. 6.7 for F × 104 = 0.20 and
0.30. The real part of φ is limited to less than 10◦, and φi can be either plus or minus. It is evident that
at the maximum of σ, where ∂α/∂βr is real, φi must be zero. With the group-velocity angle known, the
accuracy of the simple relation Eq. 2.35 for σ as a function of ψ can be checked. We choose F = 0.20× 10−4

and ψ = 45◦ in order to have φ real. Table 6.1 gives k, the wavenumber; σ, the amplification rate parallel
to ψ (both of these are calculated as an eigenvalue); σ(ψ), the component of σ in the x direction for the
specified ψ; and σ(0), the amplification rate in the x direction for ψ = 0 as calculated from Eq. 2.41c, the
spatial-theory replacement for the Squire transformation derived from Eq. 2.35, but with ψ replaced by ψ.
In the latter calculation we have used φr = 9.65◦, the value obtained with ψ = 0. The transformation woks
very well; the small discrepancies from the correct ψ = 0 value are due to φr being a weak function of ψ
instead of constant as assumed in the derivation.

We observe in Table 6.1 that the real Squire transformation, which is the σ(ψ) entry for ψ = ψ, is in
error by 14.4%, whereas the correct transformation is in error by only 0.1%. When the same calculation is
repeated for the other frequency of Fig. 6.7, F = 0.30 × 10−4, for which φi = −2.48◦ at ψ = 45◦ instead
of 0◦ as for the frequency of the Table, equally good results are obtained for σ(0) from the transformation.
However, k is no longer constant, but increases with ψ; for ψ = 75◦ it is 0.4% larger than at ψ = 0◦. Nayfeh
and Padhye (1979) provide a formula for this change.

In Fig. 6.8, ln(A/A0) is given at several Reynolds numbers for F = 0.20 × 10−4 as calculated with the
irrotationality condition, Eq. 2.64, applied to the wavenumber vector. The abscissa is the initial wave angle
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Table 6.1: Effect of ψ on amplification rate and test of transformation rule. F = 0.20 × 10−4, R = 1200,
ψ = 45◦.

ψ k σ × 103 σ(ψ)× 103 σ(0)× 103

eigenvalue transformation

0.0 0.1083 3.201 3.201 3.201
9.7 0.1083 3.156 3.111 3.201
15.0 0.1083 3.170 3.062 3.201
30.0 0.1083 3.368 2.916 3.203
45.0 0.1083 3.873 2.739 3.204
60.0 0.1083 4.955 2.478 3.207
75.0 0.1083 7.601 1.967 3.216

Figure 6.8: Effect of wave angle on ln(A/A0) at several Reynolds numbers for F = 0.20 × 10−4; Blasius
boundary layer.
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Figure 6.9: Eigenfunctions of û amplitude at R = 800, 1200 and 1600 for F = 0.30×10−4; Blasius boundary
layer.

at R = 900. The change in the wave angle from R = 900 to 1900 is 1.7◦ for the wave that has an initial
wave angle of 45◦. This figure shows that the greater amplification rate of oblique waves in the instability
region near the lower branch of the neutral curve translates into an amplitude ratio that is greater than
the 2D value. However, ln(A/A0) for an oblique wave is never more than 0.35 greater than the 2D value.
Figure 6.8 also shows that just as the frequency bandwidth narrows with increasing R, so does the bandwidth
in spanwise wavenumber. Although at the lower Reynolds numbers the response extends to the large wave
angles, at R = 1900 the amplitude ratio is down to 1/e of its 2D value at ψ = 37◦, and on the envelope curve
this angle will be still smaller. For example, the 1/e amplitude for F = 0.60 × 10−4 at the envelope-curve
Reynolds number (R = 900) occurs at ψ = 29◦; for F = 0.30 × 10−4, at ψ = 26◦. Even so, it is necessary
when thinking about wave amplitudes in the boundary layer to keep in mind that both a frequency band
and spanwise-wavenumber band must be considered, not just a 2D wave.

So far we have only been considering the eigenvalues and not the eigenfunctions. The eigenfunctions give
the possibility of penetrating further into the physics of instability, and we shall take them up briefly at this
point. Eigenfunctions are readily obtained with any of the current numerical methods, but were difficult to
compute with the old asymptotic theory. The first eigenfunctions were obtained by Schlichting (1935), and
the good agreement of the measurements of Schubauer and Skramstad (1947) with these calculations was a
key factor in establishing the validity of the linear stability theory. The problem now is more one of finding
a reasonable way to present the great mass of numerical data that can be computed, and to extract useful
information from this data. Some progress has been made in the latter direction by Hama et al. (1980). For
different amplitudes of 2D waves, these authors calculated streamline patterns, contours of constant total
velocity, Reynolds stress and all terms of the local spatial energy balance.

Figure 6.9 gives the amplitude of the eigenfunction û of the streamwise velocity fluctuation u at R = 800,
1200 and 1600 for the 2D wave of frequency F = 0.30 × 10−4. The corresponding phases are given in
Fig. 6.10. As may be seen from Fig. 6.1a, these Reynolds numbers are, respectively, just below the lower
branch of the neutral stability curve, near the maximum of σ, and on the envelope curve of the amplitude
ratio. The eigenfunction normalization of Figs. 6.9 and 6.10 is p̂(0) = (2−1/2, 0). The eigenfunctions have
not been renormalized to, say, a constant peak amplitude as is often done, in order to emphasize that in the
quasi-parallel theory the normalization is completely arbitrary. Nothing can be learned as to the effect of the
variability of the eigenfunction with Reynolds number on the wave amplitude within the framework of this
theory. Attempts have been made to do this, and plausible looking results obtained, but this approach is
without theoretical justification. It has already been pointed out in Section 2.2 that the meaningful quantity
for the amplitude modulation is the product of A(x1) adn the eigenfunction, and this product, which has a
fixed value regardless of the normalization of the eigenfunction, can only be calculated from the nonparallel
theory.

For the wave of Fig. 6.9, the critical layer is at about y = 0.15 and varies only slightly with Reynolds
number. Thus the location of the amplitude peak, which is a strong function of R, is only coincidentally
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Figure 6.10: Eigenfunctions of û phase at R = 800, 1200 and 1600 for F = 0.30 × 10−4; Blasius boundary
layer.

Figure 6.11: Energy production term at R = 800, 1200 and 1600 for F = 0.30 × 10−4; Blasius boundary
layer.
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at the critical point. As R increases, the viscous layer near the wall becomes thinner as expected. The
characteristic phase change of approximately 180◦ in the outer part of the boundary layer has nothing to
do with the 180◦ phase change at the critical layer in the inviscid solution (Eq. 3.9b), but is a kinematical
consequence of a wave with zero amplitude at both the wall and at y → ∞. At some ym greater than the
y of maximum amplitude, where viscosity has little influence, the slope of the streamlines relative to the
phase velocity has a maximum. Thus the velocity-streamtube area relation changes sign, and at all y > ym
the u fluctuation from this effect is opposite in sign to the fluctuation that arises from the wavy motion in
a monotonically increasing velocity profile. At some yb > ym, these two effects can exactly balance for a
neutral inviscid wave, and almost balance for nonneutral, viscous waves. For the latter, as shown in Fig. 6.10,
there is a nearly 180◦ shift in the phase of û. The fact that the phase can either advance or retreat in this
region was first noted by Hama et al. (1980), and its significance, if any, is unknown.

It was shown in Section 5.1 that the kinetic energy of a 2D instability wave is produced by the term
τdU/dy, where τ is the Reynolds stress built up by the action of viscosity. Reynolds stress distributions have
been given by Jordinson (1970) and Kümmerer (1973), among others. The energy production term is shown
in Fig. 6.11 for the frequency and three Reynolds numbers of Figs. 6.9 and 6.10. The peak production does
not occur at the critical layer at any of the three Reynolds numbers. We see that energy production is by
no means limited to the region between the wall and the critical layer, as might be expected from the simple
theory of Chapter 5. At R = 1200, where the amplification rate is near its maximum, there is significant
energy production over about half of the boundary-layer thickness. In these examples, the Reynolds stress
is positive except for the slightly damped wave at R = 800, where there is a small negative contribution over
the outer 70% of the boundary layer. The damping at R = 800 is due to viscous dissipation, not to a negative
production term. Hama et al. (1980) give an example at low Reynolds number where the production term
is negative over the entire boundary layer.

6.2 Falkner-Skan boundary layers

The influence of pressure gradient on boundary-layer stability can be studied conveniently by means of the
Falkner-Skan family of self-similar boundary layers, where the Hartree parameter βh (Eq. 2.62) serves as a
pressure-gradient parameter. The range of βh is from -0.19883774 (separation profile) through 0 (Blasius
profile) to 1.0 (2D stagnation point profile). Extensive numerical calculations for Falkner-Skan profiles have
been carried out by Wazzan et al. (1968a, see also Obremski et al. (1969)), and by Kümmerer (1973).
Figure 6.12, taken from Mack (1977), gives the influence of βh on the N -factor envelope curve. It is clear
that a favorable pressure gradient (βh > 0) stabilizes the boundary layer, and an adverse pressure gradient
(βh < 0) destabilizes it. The strong instability for adverse pressure gradients is caused by an inflection point
in the velocity profile that moves away from the wall as βh becomes more negative. The adverse pressure
gradient Falkner-Skan boundary layers are particularly instructive because they provide us with examples
of boundary layers with both viscous and inflectional instability.

The amplification rate σ̂ is unsuitable for studying inflectional instability, which is basically an inviscid
phenomenon, as it is zero at R → ∞ regardless of whether the boundary layer is stable or unstable in the
inviscid limit. The calculations of Kümmerer (1973) include both σ and σ̂ and show that the mximum
amplification rate σmax moves from R = 2740 for the Blasius boundary layer to R → ∞ as βh decreases
from zero. When σmax is at R → ∞, which occurs before βh reaches the separation value, we can say that
the boundary layer is dominated by inflectional instability. In these cases, viscosity acts primarily to damp
out the disturbances just as envisioned by the early investigators. When we take up compressible boundary
layers in Part II, we shall encounter another example where the dominant instability changes from viscous
to inflectional as a parameter (the freestream Mach number) varies.

The frequencies along the envelope curves of Fig. 6.12 are given in Fig. 6.13. We may observe that in
boundary layers with favorable pressure gradients, where viscous instability is the only source of instability,
it is the low frequency waves which are the most amplified. On the contrary, for boundary layers with adverse
pressure gradients, where inflectional instability is dominant, it is high-frequency waves which are the most
amplified.

In a natural disturbance environment, a wide spectrum of normal modes may be expected to exist in
the boundary layer. It is helpful to know the sharpness of the response in estimating when the disturbance
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Figure 6.12: 2D envelope curves of ln(A/A0) for Falkner-Skan family of boundary layers..

Figure 6.13: 2D envelope-curve frequencies of Falkner-Skan boundary layers.

51



Figure 6.14: Frequency bandwidth along 2D envelope curves for Falkner-Skan boundary layers.

amplitude is large enough to initiate transition. A measure of this quantity is given in Fig. 6.14, where a
frequency bandwidth of the 3D waves along the envelope curve, expressed as a fraction of the most amplified
frequency, is shown for the Falkner-Skan family. This bandwidth is not identical to the one in the inset of
Fig. 6.5, as it gives only the frequency range less than the most amplified frequency for which the amplitude
ratio is within 1/e of the peak value. The filtering action of the boundary layer is again evident in the
narrowing of the bandwidth with increasing Reynolds number for a given boundary layer, and we see that
the more unstable adverse pressure-gradient boundary layers have the strongest filtering action.

6.3 Non-similar boundary layers

The self-similar boundary layers are useful for illustrating basic instability mechanisms, but in practice,
boundary layers are non-similar. A computer code to perform stability calculations for non-similar boundary
layers is more complicated than for self-similar boundary layers, but only because of the necessity of calling
up a different velocity profile at each Reynolds number, or of interpolating between different profiles. The
stability calculations themselves are the same as in any Reynolds number dependent boundary layer. The
eigenvalues are calculated as a function of Reynolds number, and then can be subsequently used to calculate
N factors, or for any other purpose, exactly as if the boundary layer were self-similar. Such calculations
have been done on a routine basis at least as far back as the paper of Jaffe et al. (1970).

6.4 Boundary layers with mass transfer

Suction stabilizes a boundary layer, and blowing destabilizes it. This result was established by the early
investigators, and extensive stability calculations were carried out with the asymptotic theory. Suction can
stabilize a boundary layer with or without an inflection point. The stability mechanism is similar to the
action of a pressure gradient. Suction gives a “fuller” velocity profile, just as does a favorable pressure
gradient; blowing gives a velocity profile with an inflection point, just as does an adverse pressure gradient.
Suction is the primary method proposed for laminar flow control on aircraft, where it has been investigated
mainly in connection with three-dimensional boundary layers. A summary account of early work on this
subject may be found in the book of Schlichting (1979). More recent work on this subject carried out by
him and his coworkers may be found in the Lecture Notes of an AGARD/VKI Special Course (Pfenninger,
1977).
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Figure 6.15: Temporal eigenvalue spectrum of Blasius boundary layer for α = 0.179, R = 580.

6.5 Boundary layers with heating and cooling

Heating an air boundary layer destabilizes it, and cooling stabilizes it. The proper calculation of this effect
requires the compressible stability theory which is given in Part II. An example for a low-speed boundary
layer may be found in Section 10.3.

For a water boundary layer, the effect is the opposite, and heating the wall has been extensively studied
as a means of stabilization. This mechanism of stabilization is solely through the effect on the viscosity,
and can be studied with the incompressible stability theory provided only that the viscosity is taken to be
a function of temperature. The initial work on this subject was by Wazzan et al. (1968b).

6.6 Eigenvalue spectrum

An arbitrary disturbance cannot be represented by a single normal mode, or by a superposition of normal
modes. These modes represent only a single number of an entire eigenvalue spectrum, and it is this spectrum
that is required for an arbitrary disturbance. It can be proved that for a bounded shear flow, such as plane
Poiseuille flow, the eigenvalue spectrum is discrete and infinite (Lin, 1961). That is, for a given wavenumber
and Reynolds number, there is an infinite discrete sequence of complex frequencies whose eigenfunctions
satisfy the boundary conditions. Each element of the sequence constitutes a mode. This is the more precise
meaning of the term mode; what we have called the normal modes all belong to the first, or least stable, of
these more general modes. To distinguish between the two usages of the term mode, we shall refer to the
discrete sequence as the viscous modes. Only the first viscous mode can be unstable; all of the others are
heavily damped, which is the reason why they are unimportant in almost all practical stability problems.
Calculations of the discrete temporal eigenvalue spectrum of plane Poiseuille flow have been carried out by
Grosch and Salwen (1968), Orszag (1971) and Mack (1976).

It was long believed that the eigenvalue spectrum of boundary-layer flows is also discrete. however, a
calculation by Jordinson (1971) for a single value of α and R uncovered only a finite discrete spectrum for
the Blasius boundary layer. These calculations were in some error numerically, but a later investigation by
Mack (1976), which worked out the correct temporal spectrum, confirmed the conclusion of Jordinson. As
shown in Fig. 6.15, at α = 0.179, R = 580, the case considered by Jordinson, there are only seven viscous
modes. Mode 1 is amplified; Modes 2-7 are strongly damped. In Fig. 6.15, the eigenvalues are shown in
complex c space, rather than ω space, because cr = 1.0 has a special significance in this problem.

Although the number of discrete modes is a function of both wavenumber and Reynolds number, the
number remains finite and comparatively small. It was shown by Mack (1976) on teh basis of numerical
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examples with finite-width channels in which the upper boundary moved to y → ∞, and with polynomial
velocity profiles of various orders, that both the semi-infinite flow interval and the continuity of the velocity
profile at the edge of the boundary layer, are responsible for the non-existence of the infinite part of the
discrete spectrum of bounded flows. As a finite discrete spectrum is still unable to represent an arbitrary
disturbance, where are the missing eigenvalues?

It is a not uncommon occurrence in eigenvalue problems to have only a finite discrete spectrum. The
remaining part of the spectrum is then a continuous spectrum. An example is the inviscid stability equation,
which has a continuous spectrum associated with the singularity at the critical layer. It was already suggested
by Jordinson (1971) that the discrete viscous spectrum is supplemented by a continuous spectrum along the
cr = 1 axis. The proof by Lin (1961) that a viscous continuous spectrum cannot exist for a bounded flow
does not apply to an unbounded flow. Mack (1976) supported Jordinson’s expectation by means of a few
numerical calculations of continuous-spectrum eigenvalues, and also showed that the continuous spectrum is
always damped because of the restriction ci < −α/R. A more complete and definitive study of the continuous
spectrum was subsequently carried out by Grosch and Salwen (1978), who are responsible for clarifying many
aspects of this problem. Also a paper by Murdock and Stewartson (1977) must be mentioned. Results for
the discrete spatial spectrum of the Blasius boundary layer have been given by Corner et al. (1976).
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Chapter 7

Harmonic Point Sources of Instability
Waves

7.1 General remarks

In the previous Chapters, we have been considering the behavior of the individual normal-mode solutions of
the linearized, quasi-parallel stability questions. This primary attention to the normal modes has been the
usual course in the most theoretical and experimental work on boundary-layer stability. The fundamental
stability experiments of Schubauer and Skramstad (1947) in low-speed flow, and of Kendall (1967) in high-
speed flow were both designed to produce a particular normal mode. Even the much used eN method of
transition prediction is based on the amplitude ratio of the most amplified normal mode. In most actual flow
situations, however, a spectrum of instability waves is present. If the boundary layer were truly parallel, the
most unstable mode would eventually be the dominant one, and all the other modes would be of negligible
importance. As boundary layers found in practice are not parallel, the changing Reynolds number means
that the identity of the most unstable mode also changes as the wave system moves downstream, and no
single mode can grow indefinitely. Disturbance energy will always be distributed over a finite bandwidth. If
the modes all come from a single source, or are otherwise phase related, then interference effects will cause
the evolution of the wideband amplitude to further depart from the amplitude evolution of a single normal
mode. This difference was vividly demonstrated in the experiment of Gaster (1975), where the amplitude at
the center of a wave packet produced by a pulsed point source changed little with increasing distance from
the source, even though the amplitude of the most amplified normal mode was increasing several times.

The wave-packet problem was treated first by Criminale and Kovasnay (1962) and by Gaster (1968).
Neither the straight wave fronts of the former, nor the caustic of the latter, were observed experimentally,
because in each case approximations that were needed to produce numerical results turned out not to be
valid. Later, Gaster (1975) obtained results in good agreement with experiment by replacing the method of
steepest descent used earlier by direct numerical integration. He was also able to demonstrate the validity
of the method of steepest descent for a 2D wave packet in a strictly parallel flow by exact calculation of the
necessary eigenvalues (Gaster, 1981b, 1982a). Finally, he showed how to extend this method to a growing
boundary layer (Gaster, 1981a, 1982b), where the mean flow downstream of the source is a function of
Reynolds number.

In this Chapter we shall examine a simpler problem than the wave packet, namely the stationary wave
pattern produced by a harmonic point source. This wave motion has the same number of space dimensions
as a 3D wave packet, but is really a 2D wave propagation problem that is closely related to Gaster’s 2D wave
packets. The propagation space here is x, z, the plane of the flow, rather than x, t as in the latter problem.
The fact that the wave motion is two dimensional makes it possible to obtain detailed numerical results
both numerical integration and by Gaster’s (1981a; 1982b) extension of the method of steepest descent for
a growing boundary layer (Mack and Kendall, 1983). In the point-source problems, no attempt is made
to find a complete mathematical solution. Instead it is merely assumed, following Gaster (1975), that the
source produces a continuous spectrum of the least stable normal modes. For a pulsed 2D (line) source, the
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Figure 7.1: Constant-phase lines of wave pattern from harmonic point source in Blasius boundary layer;
F = 0.92× 10−4, Rs = 390. [After Gilev et al. (1981)]

spectrum is over frequency; for a pulsed 3D (point) source, the spectrum is over frequency and spanwise
wavenumber; for a harmonic point source, the spectrum is over spanwise wavenumber. It is usually, but not
always, assumed that the spectral densities are uniform (“white noise” spectra).

The solution for a harmonic point source is obtained by evaluating the integral for the complex amplitude
over all possible spanwise wavenumbers. The most straightforward method is to use direct numerical inte-
gration; a second method is to evaluate the integral asymptotically by the method of steepest descent as was
done for parallel flows by Cebeci and Stewartson (1980a,b), and, in more detail, by Nayfeh (1980a,b). Some
numerical results for Blasius flow were cited by Cebeci and Stewartson (1980b), but within the framework
of the eN method of transition prediction. Only the exponential term of the amplitude was evaluated, and
the saddle-point condition was the one for parallel flow.

Experiments on the harmonic point source have been carried out by Gilev et al. (1981), and by Mack and
Kendall (1983). In these experiments, extensive hot-wire measurements of amplitude and phase were made
in the downstream and spanwise directions in a Blasius boundary layer. In Gilev et al. (1981), a Fourier
analysis of the data yielded the oblique normal modes, but no comparisons with theory were made. One
significant result was the mapping out of the lines of constant phase in the x, z plane as shown in Fig. 7.1.
At least three distinct regions can be identified in this figure. Close to the source, the curvature is convex,
and far away it is concave. In an intermediate region, a “dimple” appears at the center line. A region of
concave curvature gradually extends outward to encompass the entire outer portion of the wave pattern,
while the dimple spreads, flattens and finally disappears. All of these features are duplicated in the wave
pattern calculated by numerical integration (Mack and Kendall, 1983).

Figure 7.1 shows that there is a maximum inclination of each constant-phase line that is much less than
the maximum wave angle of unstable normal modes. This feature follows directly from the method of steepest
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descent, where the saddle-point condition limits the Reynolds-number dependent maximum wave angle to
40◦–45◦. This restriction was noted in unpublished calculations by Mack and by Padhye and Nayfeh (private
communication), as well as by Cebeci and Stewartson (1980b).

In the quasi-parallel theory, amplitude is defined as the integral of the spatial amplification rate, and
is not identified with any particular flow variable or distance y from the wall. In the Gaster-Grant (1975)
experiment, amplitude was measured at the outer peak of the amplitude distribution; in Gilev et al. (1981)
at a fixed y∗/δ in the boundary layer, and also at a fixed y∗ just outside of the boundary layer; and in
Mack and Kendall (1983), at the inner peak of the amplitude distribution. A comparison of the calculated
amplitudes with the measurements thus demonstrates whether the amplitude of the quasi-parallel theory
has any relevance to the point-source problems. Exact correspondence can hardly be expected, if for no
other reason than the fact that the disturbance energy is distributed over an ever increasing boundary-layer
thickness as the waves move downstream.

The integral over all spanwise wavenumbers for the dimensional velocity fluctuation ut (the subscript t
denotes time dependence) from a source of frequency ω∗ located at x∗s, z

∗
s is

u∗t (x
∗, z∗, t∗) = exp(−iω∗t∗)

∞∫
−∞

g∗(β∗) exp [iχ (β∗;x∗, z∗)] dβ∗, (7.1)

where g∗(β∗) is the (complex) amplitude distribution function of dimensions velocity × length, the frequency
is real,

χ(x∗, z∗) =

x∗∫
x∗
s

α∗(x∗;β∗, ω∗)dx∗ + β∗(z∗ − z∗s ) (7.2)

is the time-dependent part of the phase, and the wavenumber components α∗ and β∗ are complex. The
eigenfunctions are ignored so that ut is independent of y∗, and ut could equally well be considered as any
other flow variable. This integral will be evaluated below by direct numerical integration, and by and
adaptation of citeauthorGaster1981a’s (1981a; 1982b) asymptotic method.

7.2 Numerical integration

We place the source at z∗s = 0, drop the time factor, and define the dimensionless variables

α̂ =
α∗ν∗

U∗1
, β̂ =

β∗ν∗

U∗1
,

x̂ =
U∗1x

∗

ν∗
, ẑ =

U∗1 z
∗

ν∗
, (7.3)

u =
u∗

U∗1
, g =

2πg∗

ν∗
,

where u∗ is the time-independent part of u∗t , and the reference velocity is the freestream velocity U∗1 We have

chosen the inverse unit Reynolds number ν∗/U∗1 as the reference length so that β̂, as well as β∗ will satisfy
the irrotationality condition in the simplest form, Eq. 2.56. With these choices, the dimensionless x̂ and ẑ
are the usual x and z Reynolds numbers. The reason for the normalization constant 2π in the definition of
g will appear in Section 7.4. With the definitions of Eqs. 7.2, Eq. 7.1 becomes

u(x̂, ẑ;F ) =
1

2π

∞∫
−∞

g(β̂) exp
[
iχ
(
β̂; x̂, ẑ

)]
dβ̂. (7.4)

With z∗s = 0, the phase is

χ
(
β̂; x̂, ẑ

)
=

x̂∫
x̂s

α̂ dx̂+ β̂ẑ. (7.5)
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We take β̂ to be real for convenience, which means that we are going to sum over spatial normal modes of
the type we have been using all along. If we write

χ = χxr + iχi + β̂ẑ, (7.6a)

where

χxr =

x̂∫
x̂s

α̂r dx̂, χi =

x̂∫
x̂s

α̂i dx̂, (7.6b)

the real and imaginary parts of u are

ur (x̂, ẑ) =
1

π

π∫
0

g
(
β̂
)

exp (−χi) cos (χxr) cos
(
β̂ẑ
)
dβ̂, (7.7a)

and

ui (x̂, ẑ) =
1

π

π∫
0

g
(
β̂
)

exp (−χi) sin (χxr) cos
(
β̂ẑ
)
dβ̂. (7.7b)

We have taken advantage of the symmetry in β̂ of g(β̂), χxr and χi to restrict the interval of integration to

the positive β̂ axis. Equations 7.7 are the specific integrals to be evaluated by numerical integration. It is
convenient to present the numerical results in terms of the peak, or envelope, amplitude

A (x̂, ẑ) =
√
u2
r + u2

i , (7.8a)

and the local phase

θ (x̂, ẑ) = tan−1

(
ui
ur

)
. (7.8b)

Both of these quantities can be measured experimentally.
The numerical integration of Eqs. 7.7 proceeds as follows: With the dimensionless frequency F equal to

the frequency of the source, the phase integrals χxr and χi of Eq. 7.6b are evaluated as functions of x̂ with
constant β̂ for a band of spanwise wavenumbers from the eigenvalues α̂(x̂; β̂, F ). The Fourier cosine integrals
are evaluated at enough ẑ stations at each x̂ to resolve the wave pattern. Highly oblique waves are damped,
with the damping rate increasing with increasing obliquity. Consequently, the integrals of Eq. 7.7 will always
converge for x̂ > x̂s if large enough values of β̂ are used. At x̂ = x̂s, χ = β̂ẑ and g(β̂) is the Fourier cosine

transform of ur(ẑ). In particular, if g(β̂) = 1, then ur is a δ-function in ẑ; if g(β̂) is a Gaussian, then so is
ur.

7.3 Method of steepest descent

The method of numerical integration is straightforward, but requires the evaluation of a few hundred eigen-
values for good resolution of the wave patter. A different approach is to evaluate the integral of Eq. 7.4
asymptotically by the method of steepest descent, or saddle-point method. This method allows certain re-
sults to be obtained with fewer calculations, and also has the advantage that the dominant wave at each x̂, ẑ
seems to correspond directly to what is observed.

Equation 7.4, with g(β̂) = 1, is written

u (x̂, ẑ) = lim
x̂→∞

1

2π

∫
C

exp
[
(x̂− x̂s) Φ

(
β̂
)]

dβ̂, (7.9)

where C is the contour of steepest descent int eh complex β̂ plane, and

(x̂− x̂s) Φ = i

x̂∫
x̂s

α̂
(
x̂; β̂

)
dx̂+ iβ̂ (x̂− x̂s) . (7.10)
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The limit x̂→∞ is taken with ẑ/(x̂− x̂s) held constant. The condition for the saddle point β̂c is

∂Φ

∂β̂
= 0, (7.11)

which is equivalent to the two real conditions

x̂∫
x̂s

(
∂α̂

∂β̂

)
r

dx̂ = −ẑ, (7.12a)

x̂∫
x̂s

(
∂α̂

∂β̂

)
i

dx̂ = 0. (7.12b)

These integrals are evaluated with the complex β̂ held constant, so that we are dealing with spatial waves
that satisfy the generalized irrotationality condition of kinematic wave theory.

The saddle-point conditions of Eq. 7.12 are of the same type as introduced by Gaster (1981a, 1982b) for a
2D wave packet in a growing boundary layer. Usually the saddle-point method is applied to problems where
the wave-propagation medium (here the boundary layer) is independent of x̂, but Gaster demonstrated the
correctness of the present procedure when the medium is a function of x̂. In a strictly parallel flow, the
boundary layer meets the more restricted requirement of x̂ independence, and the saddle-point conditions
simplify to (

∂α̂

∂β̂

)
r

= − ẑ

(x̂− x̂s)
, (7.13a)(

∂α̂

∂β̂

)
i

= 0. (7.13b)

For a constant-frequency wave,

∂α̂

∂β̂
= −

∂ω

∂β̂
∂ω

∂α̂

= − tanφ (7.14)

where φ is the complex angle of the group-velocity vector, and we see that the parallel-flow saddle-point
condition is equivalent to requiring the group-velocity angle to be real. Consequently, the observed wave
pattern in a parallel flow consists of waves of constant complex spanwise wavenumber β̂c moving along
group-velocity trajectories in the real x̂, ẑ plane. This saddle-point condition has been applied to a browing
boundary layer by Cebeci and Stewartson (1980a,b) and by Nayfeh (1980a,b). This procedure can yield
satisfactory results in a restricted region of the x̂, ẑ plane, but cannot be valid everywhere as the correct
asymptotic representation of Eq. 7.9 is in terms of Eq. 7.12 saddle points rather than Eq. 7.13 saddle points.
The “rays” defined by Eq. 7.12 are not physical rays in the usual sense. For a complex β̂c that satisfies
Eq. 7.12, ẑ is complex at all x̂ > x̂s except at the final, or observation point. The trajectory that is traced
out in the x̂, ẑ plane by satisfying Eq. 7.12 at successive x̂ > x̂s for the same (β̂c)r has a different (β̂c)i at
each point. In a parallel flow, a single normal mode defines an entire ray; here a single normal mode defines
only a single point.

With Φ expanded in a power series in β̂ − β̂c, and with only hte first nonzero term retained (assuming it
is the second derivative), Eq. 7.9 becomes

u =
1

2π
exp

[
(x̂− x̂s) Φ

(
β̂c

)] ∫
C

exp

[
β̂c
2

∂2Φ

∂β̂2
(x̂− x̂s)

(
β̂ − β̂c

)]
dβ̂. (7.15)

We write

β̂c
∂2Φ

∂β̂2
= D̂ exp (iθd) , (7.16a)

β̂ − β̂c = ±is exp (iθs) , (7.16b)
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where s is the path length measured from teh saddle point, and θs is its inclination. With the contour C
selected to pass through β̂c from left to right at the constant angle θs = −θd/2, the final result is

u(x̂, ẑ) =

[
1

2π
(x̂− x̂s) D̂

]1/2

exp
[
(x̂− x̂s) Φ

(
β̂c

)]
exp

[
i

(
π

4
− θd

2

)]
. (7.17)

Replacing D̂, x̂, α̂ and β̂ by D, R, α and β, where the reference length is L∗ of Eq. 2.57, we obtain

u(R, ẑ) =

√
2

πD
exp (−χi + iχr) , (7.18)

where

D = 2

∣∣∣∣∣∣
R∫

Rs

R2 ∂
2α

∂β2
dR

∣∣∣∣∣∣ , (7.19)

χr = 2

R∫
Rs

αr(R;βc) dR+
(βc)r ẑ

R
+
π

4
− θd

2
, (7.20a)

χi = 2

R∫
Rs

αi(R;βc) dR+
(βc)iẑ

R
, (7.20b)

and θd is the argument of the complex integral in Eq. 7.19. We continue to use ẑ for the z-Reynolds number.
In these variables, the saddle-point conditions are

2

R∫
Rs

(
∂α

∂β

)
r

R dR = −ẑ, (7.21a)

R∫
Rs

(
∂α

∂β

)
i

R dR = 0. (7.21b)

With the parallel-flow saddle-point conditions of Eqs. 7.13, Eq. 7.18 is still valid, but D and θd have different
meanings. With ∂2α̂/∂β̂2 constant,

D =

√
R (R2 −Rss)

∂2α

∂β2
, (7.22)

and θd is the argument of ∂2α̂/∂β̂2 rather than of its integral.

For a given R and ẑ, a double iteration procedure is needed to find the complex β̂c that satisfies Eq. 7.12.
As each iteration involves the recalculation of eigenvalues and ∂2α̂/∂β̂2 from Rs to R, the computational

requirements are large. If only R is given, then an iteration of β̂i for a sequence of β̂r will produce the wave
pattern at that R with much less computation, but the specific ẑ at which the amplitude and phase are
calculated will not be known in advance. Or, both β̂r and β̂i can be specified, and R advanced until the
integral in Eq. 7.12b changes sign. This will not always happen, but when it does, a saddle point and its
location in the R, ẑ plane are obtained without iteration.

Because of the iteration requirement, the saddle-point method is less suited than numerical integration
to the detailed calculation of the entire wave pattern, but it can more readily produce results at just a few
locations. Its greatest advantage, however, is that along the centerline (z = 0) the amplitude and phase can
be obtained at a specified R without iteration, and a single integration pass from Rs to R produces results
at all intermediate R at which eigenvalues are calculated. This is possible because the saddle point is at
β̂ = 0 all along the centerline, and only Eq. 7.19 has to be used, and not Eqs. 7.12. We can also note that
there is no real saving by using the approximate Eq. 7.22 in place of Eq. 7.19, because ∂2α/∂β2 has to be
calculated in any case, and only the numerical integration of this derivative is eliminated.
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7.4 Superposition of point sources

We can imagine sources of instability waves to occur not just as single point sources, but as multiple point
sources and as distributed sources. For several discrete sources, the formulas of the preceding Section apply,
and we just have to add the contributions from various sources. We can use this same approach for distributed
sources: The distributed source is represented by discrete, closely spaced, infinitesimal point sources. In this
Section, we apply this idea to line sources.

We replace the function g∗(β∗) in Eq. 7.1 with a more general function

g∗ (β∗, x∗s, z
∗
s ) =

1

2π
u∗s (x∗s, z

∗
s ) ∆ξ∗sg

(
β̂
)
, (7.23)

where u∗s, the source strength, has the same dimensions as u∗t , and ξ∗s is the arc length along the source. We
substitute Eq. 7.23 into Eq. 7.1 without the time factor, use the definitions of Eq. 7.3, adn arrive at

∆u(x̂, ẑ) =
1

2π
us∆ξs

∞∫
−∞

g
(
β̂
)

exp(iχ)dβ̂ (7.24a)

for the contribution to u at x̂, ẑ of an infinitesimal line source at x̂s, ẑs. In Eq. 7.24a, us = u∗s/U
∗
1 , ξs =

ξ∗sU
∗
1 /ν

∗, and

χ (β; x̂, ẑ) =

x̂∫
x̂s

α̂ dx̂+ β̂ (ẑ − ẑs) . (7.24b)

A finite-length source which extends from s1 = (x̂s, ẑs)1 to s2 = (x̂s, ẑs)2 will produce at x̂, ẑ the velocity

u(x̂, ẑ) =
1

2π

s2∫
s1

us dξs

∞∫
−∞

g
(
β̂
)

exp(iχ) dβ̂, (7.25)

where the ξs integration proceeds along the line source.
As the simplest possible example, we apply Eq. 7.25 to a 2D infinite-length line source, i.e., a source

which extends from ẑ → −∞ to ẑ →∞ at a constant x̂s. With g(β̂) = 1, so that all oblique normal modes
have the same initial amplitude and phase, we obtain

u(x̂, ẑ) =
1

2π

∞∫
−∞

us dẑ

∞∫
−∞

exp(iχ) dβ̂. (7.26)

The integral over ẑs must converge because the β̂ integral is just the point-source solution Eq. 7.3. A physical
interpretation of Eq. 7.26 is that Eq. 7.3 can be regarded as either the distribution of u with respect to ẑ
at the observation station x̂ due to a single source at x̂s, 0, or as the variation of u at the single observation
point x̂, 0 as the point source at x̂s moves from ẑs → −∞ to ẑs → ∞. Consequently, if the point-source
solution is weighted by us and integrated with respect to ẑs, the resultant amplitude and phase must be that
produced by an infinite-length spanwise line source.

At x̂ = x̂s, the phase function χ reduces to β̂(ẑ − ẑs and Eq. 7.26 becomes

u (x̂s, ẑ) =
1

2π

∞∫
−∞

us dẑs

∞∫
−∞

cos
[
β̂ (ẑ − ẑs)

]
dβ̂. (7.27)

We recognize the β̂ integral as the Dirac δ-function:

cos
[
β̂ (ẑ − ẑs)

]
dβ̂ = 2πδ (ẑ − ẑs) , (7.28)

Therefore, u(x̂, ẑ) = us as it should, and we see the reason for the factor 2π in the definition of the function
g in Eqs. 7.3 and 7.23. Thus when applied to an infinite-length line source of constant amplitude As and
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Figure 7.2: Centerline amplitude distribution behind harmonic point source as calculated by numerical
integration, and comparison with 2D normal mode; F = 0.60× 10−4, Rs = 485, Blasius boundary layer.

of constant phase, Eq. 7.25 must yield the amplitude ratio A/As of a 2D normal mode. This property of

the point-source solution offers a convenient check on numerical results. Furthermore, if us = As sin(β̂sẑs)

(standing wave) or As exp(iβ̂sẑs) (traveling wave), Eq. 7.25 will give the amplitude ratio of an oblique normal

mode of spanwise wavenumber β̂s. Applications of Eq. 7.25 to finite-length 2D and oblique line sources have
been given by Mack (1984a).

7.5 Numerical and experimental results

The wave pattern behind a harmonic point source of frequency F = 0.60 × 10−4 located at Rs = 485 has
been worked out in detail by Mack and Kendall (1983). We shall quote a few results here. Figure 7.2
gives the centerline amplitude distribution downstream of the source as calculated by numerical integration
from Eq. 7.7 with ĝ(β̂) = 1. The amplitude distribution of the 2D normal mode is shown for comparison,
where A0 has been chosen to equal the amplitude at R = 630. The initial steep drop in the amplitude is
reversed near the lower branch of the 2D neutral-stability curve, but this first minimum is followed by a
broad second minimum before the sustained amplitude growth gets under way. The peak amplitude occurs
at the upper-branch location of R = 1050. However, the magnitude of the peak amplitude is less than half
of the normal-mode amplitude. The reduction in amplitude is due to the sideways spreading of the wave
energy in the point-source problem.

The wave energy also spreads in the y direction because of the growth of the boundary layer. This effect
is not included in the calculation because of the use of parallel-flow eigenvalues, even though the correct
Reynolds-number dependent eigenvalues have been used. In the point-source wave-packet problem, Gaster
(1975) found that the boundary-layer growth could not be ignored, and he introduced a correction based on
a simple energy argument. With the assumption that the wave energy is proportional to the square of the
amplitude, A2 would be constant in the absence of damping or amplification or sideways spreading. This
argument suggests that the amplitude from Eq. 7.7 be multiplied by R−1/2 to correct for boundary-layer
growth, adn the result is shown in Fig. 7.2. This correction is sizable, and if correct cannot be neglected.

A characteristic feature of experimental phase measurements on the centerline is that if the phase is
extrapolated backwards to zero the apparent location of the source is downstream of the actual source
location. Figure 7.3 demonstrates why this is so. The phase initially rises at a slower rate, and it is only
after an adjustment in the region where amplification starts that the phase then increases at the faster rate
of the measurements.
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Figure 7.3: Centerline phase distribution behind harmonic point source as calculated by numerical integra-
tion; F = 0.60× 10−4, Rs = 485, Blasius boundary layer.

Figure 7.4: Comparison of measured and calculated cecnterline amplitude distributions behind harmonic
point source; F = 0.60× 10−4, Rs = 485, Blasius boundary layer.
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Figure 7.5: Spandwise amplitude and phase distribution at R = 700 behind harmonic point source; F =
0.60× 10−4, Rs = 485, Blasius boundary layer.

The centerline amplitude distribution has also been calculated from Eq. 7.18 of the extended saddle-point
method. Starting at about R = 650, the saddle-point results are virtually identical with those obtained from
numerical integration in both amplitude and phase. Even the parallel-flow saddle-point method gives a good
result to about the region of maximum amplitude, after which there is a slight departure. Consequently,
Eq. 7.18 gives us a way to obtain the centerline amplitude accurately everywhere except quite close to the
source with only a little more calculation than is needed to obtain the normal-mode A/A0.

The important question now is whether or not the amplitude distribution of Fig. 7.2 has anything to do
with an experimentally determined amplitude. The answer is given in Fig. 7.4 (Mack and Kendall, 1983). For
the same conditions as the calculations, a hot-wire anemometer was moved downstream in a Blasius boundary
layer. At each Reynolds number station, the maximum fluctuation amplitude in the boundary layer was
determined by a vertical traverse of the hot wires. The source strength was well within the range for which
the response at the hot wire varied linearly with the source amplitude. The amplitude in Fig. 7.4 is the actual
measured amplitude expressed as a fraction of the freestream velocity. The level of the calculated amplitude
has been adjusted accordingly. The calculated amplitude increases more rapidly than in the experiment,
but the Gaster correction for boundary-layer growth makes the two amplitude distributions identical up to
about R = 890, where the measurements depart abruptly from the theory. This disagreement was traced
to a favorable pressure gradient on the flat plate that started precisely at the point of departure. The good
agreement in this one example of the calculation with the Gaster growth correction and the measurement in
the zero pressure-gradient region, while hardly conclusive, does suggest that when dealing with wave motion
over many wavelengths, the growth at the boundary layer cannot be neglected.

The off-centerline wave pattern is of considerable complexity, as shown by Gilev et al. (1981). The peak
amplitude occurs initially off centerline, and it is only well downstream of the source that it is found on
the centerline. A typical calculated spanwise amplitude and phase distribution is shown in Fig. 7.5. The
complex evolution of the phase that appears in Fig. 7.1 is reproduced quite closely by Eq. 7.7, but the
calculated off-centerline amplitude is less exact. Indeed, the saddle-point method, even in its extended form,
fails to give off-centerline amplitude peaks of sufficient magnitude, and only agrees well with the numerical-
integration results after these peaks have disappeared. The parallel-flow saddle-point method fails badly in
calculating the off-centerline wave pattern. The difficulty of correctly computing the amplitude with the
present methods is probably related to the complicated nature of the eigenfunctions. In order for amplitude
calculations to agree as well with experiment as do the phase calculations, it will be necessary to include
the eigenfunctions in the calculations. However, even with this limitation, the numerical-integration method
does remarkably well in reproducing the measured wave pattern, and provides another example of the utility
of linear stability theory in dealing with point source problems.
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Part II

Compressible Stability Theory
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Chapter 8

Formulation of Compressible Stability
Theory

8.1 Introductory remarks

The theory of a compressible laminar boundary layer differs sufficiently from the incompressible theory to
warrant being treated as a separate subject. The basic approach and many of the ideas are the same,
and for this reason, the incompressible theory can be regarded as an indispensable prelude to the study
of the compressible theory. For example, all of the material in Sections 2.2, 2.3 and 2.6 applies also to
the compressible theory. The motivation for the study of the stability of compressible boundary layers is
the problem of transition to turbulence, just as it is for the incompressible theory. However, the relation of
stability to transition is even more of an open question than at low speeds. Experiments have been performed
that firmly establish the existence of instability waves in supersonic and hypersonic boundary layers (Laufer
and Vrebalovich, 1960; Kendall, 1967, 1975), but there are none that really demonstrate when, and under
which circumstances, transition is actually caused by linear instability. A series of stabiity experiments with
“naturally” occurring transition in wind tunnels has been carried out by Demetriades (1977) and Stetson et
al. (1983, 1984), but many of their observations have yet to be reconciled with theory. mention must also be
made of the remarkable flight experiment by Dougherty (1980) that is probably the best evidence to date
that transition in a low-disturbance environment at supersonic speeds is caused by laminar instability. For
further information on the intricacies of transition at supersonic and hypersonic speeds, we recommend a
study of the report by Morkovin (1968).

The first attempt to develop a compressible stability theory was made by Küchemann (1938). Viscosity,
the mean temperature gradient and the curvature of the velocity profile were all neglected. The latter two
assumptions later proved to have been too restrictive. The most important theoretical investigation to date
of the stability of the compressible boundary layer was carried out by Lees and Lin (1946). The developed an
asymptotic theory in close analogy to the incompressible asymptotic theory of Lin (1945), and, in addition,
gave detailed consideration to a purely inviscid theory. The Rayleigh theories were extended to compressible
flow, and the energy method was used as the basis for a discussion of waves moving supersonically with
respect to the freestream. The quantity D(ρDU), where D = d/dy, was found to play the same role in
the inviscid compressible theory as does D2U in the incompressible theory. As a consequence, the flat-plate
compressible boundary layer is unstable to purely inviscid waves, quite unlike the incompressible Blasius
boundary layer where the instability is viscous in origin.

The close adherence of Lees and Lin to the incompressible theory, and the inadequacy of the asymptotic
theory except at very low Mach numbers, meant that some major differences between the incompressible and
compressible theories were not uncovered until extensive calculations had been carried out on the basis of a
direct numerical solution of the differential equations. In the incompressible theory, it is possible to make
substantial progress by ignoring three-dimensional waves, because a 2D wave will always have the largest
amplitude ratio at any Reynolds number. This is no longer true above about a Mach number of 1.0. A second
notable difference is that in the incompressible theory there is a unique relation between the wavenumber
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and phase velocity, whereas in the compressible theory there is an infinite sequence of wavenumbers for each
phase velocity whenever the mean flow relative to the phase velocity is supersonic (Mack, 1963, 1964, 1965b,
1969; Gill, 1965b). These additional solutions are called the higher modes. They are of practical importance
for boundary layers because it is the first of the additional solutions, the second mode, that is the most
unstable according to the inviscid theory. Above about M1 = 4, it is also the most unstable at almost all
finite Reynolds numbers.

Subsequent to the work of Lees and Lin, a report of Lees (1947) presented neutral-stability curves for
insulated-wall flat plate boundary layers up to M1 = 1.3, and for cooled-wall boundary layers at M1 = 0.7.
This report also included the famous prediction that cooling the wall acts to stabilize the boundary layer.
However, this prediction must be considerably modified because of the existence of the higher modes. These
modes require for their existence only a region of supersonic relative flow, and thus cannot be eliminated by
cooling the wall. Indeed, the are actually destabilized by cooling (Mack, 1965b, 1969).

8.2 Linearized parallel-flow stability equations

A comprehensive account of the compressible stability theory must start with the derivation of the governing
equations from the Navier-Stokes equations for a viscous, heat conducting, perfect gas, which in dimensional
form are

∂ūi
∂t∗

+ ū∗j
∂ūi
∂x∗j

=
1

ρ̄∗
∂τ̄∗ij
∂x∗j

, (8.1a)

∂ρ̄∗

∂t∗
+

∂

∂x∗j

(
ρ̄∗ū∗j

)
= 0, (8.1b)

ρ̄∗c∗v

(
∂T̄ ∗

∂t∗
+ ū∗j

∂T̄ ∗

∂x∗j

)
=

∂

∂x∗j

(
κ̄∗
∂T̄ ∗

∂x∗j

)
+ τ̄∗ij ē

∗
ij , (8.1c)

p̄∗ = ρ̄∗R∗T̄ ∗, (8.1d)

where

ē∗ij =
1

2

(
∂ū∗i
∂x∗j

+
∂ū∗j
∂x∗i

)
, (8.2a)

τ̄∗ij = 2µ̄∗ē∗ij +

[
2

3

(
λ̄∗ − µ̄∗

)
ē∗kk − p̄∗

]
δij . (8.2b)

Again asterisks denote dimensional quantities, overbars time-dependent quantities, and the summation con-
vention has been adopted as in Chapter 2. The equations are, respectively, of momentum, continuity, energy
and state. The quantities which did not appear in the incompressible equations are T̄ ∗, the temperature; κ̄∗,
the coefficient of thermal conductivity; R∗, the gas constant; c∗v, the specific heat at constant volume, which
will be assumed constant; and λ̄∗, the coefficient of second viscosity (= 1.5× bulk viscosity coefficient).

The stability equations are obtained from the Navier-Stokes equations by the same procedure that we
used for incompressible flow in Section 2.1. First, all quantities are divided into mean flow and fluctuation
terms. With primes used to denote fluctuations of the transport coefficients,

ū∗ = U∗ + u∗, p̄∗ = P ∗ + p∗,

T ∗ = T ∗ + θ∗, ρ̄∗ = ρ∗ + %∗, (8.3)

µ̄∗ = µ∗ + µ′∗, κ̄∗ = κ∗ + κ′∗, λ̄∗ = λ∗ + λ′∗,

where the first variable on each RHS is a steady mean-flow quantity, and the second is an unsteady fluctuation.
Next, the equations are linearized, the mean-flow terms are subtracted out, and, finally, the parallel-flow

assumption is made. The resulting equations are then made dimensionless with respect to the local freestream
velocity U∗1 , a reference length L∗, and the freestream values of all state variables (including pressure). Both
viscosity coefficients are referred to µ∗1 and κ∗ is referred to c∗pµ

∗
1, where c∗p is the specific heat at constant
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pressure. The transport coefficients are functions only of temperature, so that their fluctuations can be
written

µ′ =
dµ

dT
θ, κ′ =

dκ

dT
θ, λ′ =

dλ

dT
θ. (8.4)

Therefore, µ, κ, and λ in the following equations, along with ρ, are mean-flow quantities, not fluctuations.
The dimensionless, linearized x-momentum equation is

ρ

(
∂u

∂t
+ U

∂u

∂x
+ v

dU

dy
+W

∂u

∂z

)
=

− 1

γM2
1

∂p

∂x
+

1

R
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2µ
∂2u

∂x2
+ µ

(
∂2u

∂y2
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∂2u

∂z2
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∂2v
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∂2w
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2
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∂2v
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∂2w
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(
∂u

∂y
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(
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θ +

dU
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∂θ

∂y
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dT 2
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dU
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θ

]
. (8.5a)

The y-momentum equation is

ρ

(
∂v

∂t
+ U

∂v

∂x
+W
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)
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− 1
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1
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. (8.5b)

The z-momentum equation is

ρ
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∂x
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dy
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. (8.5c)

The continuity equation is

∂%

∂t
+ ρ

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
+ v

dρ

dy
+ U

∂%

∂x
+W

∂%

∂z
= 0. (8.5d)
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The energy equation is

ρ
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∂θ
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.. (8.5e)

The equation of state is

p =
%

ρ
+
θ

T
. (8.5f)

Previously undefined quantities which appear in these equations are M1, the local Mach number at the edge
of the boundary layer; γ, the ratio of specific heats; and Pr = c∗pµ

∗/κ∗, the Prandtl number, which is a
function of temperature. Equations 8.5 are the compressible counterparts of the incompressible stability
equations 2.5, and are valid for a 3D disturbance in a 3D mean flow. It should be noted that unlike most
compressible stability analyses, Eq. 8.5e, the energy equation, is valid for a variable Prandtl number. The
constant Prandtl number form is recovered by replacing κ with µ in the three terms in which it occurs.

The boundary conditions at y = 0 are

u(0) = 0, v(0) = 0, w(0) = 0, θ(0) = 0. (8.6a)

The boundary conditions on the velocity fluctuations are the usual no-slip conditions, and the boundary
condition on the temperature fluctuation is suitable for a gas flowing over a solid wall. For almost any
frequency, it is not possible for the wall to do anything other than to remain at its mean temperature. The
only exception is for a stationary, or near stationary, crossflow disturbance, when θ(0) = 0 is replaced by
Dθ(0) = 0. The boundary conditions at y →∞ are

u(y), v(y), w(y), p(y), θ(y) are bounded as y →∞. (8.6b)

This boundary condition is less restrictive than requiring all disturbances to be zero at infinity, but in
supersonic flow waves may propagate to infinity and we wish to include those that do so with constant
amplitude.

8.3 Normal-mode equations

We now specialize the disturbances to normal modes as in Section 2.3:

[u, v, w, p, %, θ]T = [û(y), v̂(y), ŵ(y), p̂(y), %̂(y), θ̂(y)]T exp

[
i

(∫
α dx+ β dz + ωt

)]
, (8.7)

where we have adopted the quasi-parallel form of the complex phase function. The normal modes may grow
either temporally or spatially or both, depending on whether ω or ~k, or both, are complex. The discussion
in Section 2.3 applies to the compressible theory just as well as to the incompressible theory.

When Eqs. 8.7 are substituted into Eqs. 8.5, and the same linear combinations of x and z momentum
equations are formed as in Section 2.4 for the variables

α̃ũ = αû+ βŵ, α̃w̃ = αŵ − βû, (8.8)
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we obtain a system of equations which are the compressible counterparts of Eqs. 2.36. The momentum
equation in the direction parallel to the wavenumber vector ~k is

ρ[i(αU + βW − ω)α̃ũ+ (αDU + βDW )v̂] =

− i
(
α2 + β2

)( p̂

γM2
1

)
+
µ

R

[
α̃D2ũ+

(
α2 + β2

)
(iDv̂ − 2α̃ũ)

]
+

2

3

λ− µ
R

(
α2 + β2

)
(iDv̂ − α̃ũ) +

1

R

{
dµ

dT

(
αD2U + βD2W

)
θ̂

+

(
dµ

dT
Dθ̂ +

d2µ

dT 2
DTθ̂

)
(αDU + βDW ) +

dµ

dT
DT

[
α̃Dũ+ i

(
α2 + β2

)
v̂
]}

. (8.9a)

The y momentum equation is

iρ(αU + βW − ω)v̂ =

− Dp̂

γM2
1

+
µ

R

[
2D2v̂ + iα̃Dũ−

(
α2 + β2

)
v̂
]

+
2

3

λ− µ
R

(
D2v̂ + iα̃ũ

)
+

1

R

[
i
dµ

dT
(αDU + βDW )θ̂ + 2

dµ

dT
DTDv̂ +

2

3

dµ

dT
(λ− µ)DT (Dv̂ + iα̃ũ)

]
. (8.9b)

The momentum equation in the direction normal to ~k is

ρ[i(αU + βW − ω)α̃w̃ + (αDW + βDU)v̂] =

+
µ

R

[
α̃D2w̃ +

(
α2 + β2

)
α̃w̃
]

+
1

R

[
dµ

dT
DTα̃Dw̃

+
dµ

dT

(
αD2W − βD2U

)
θ̂ +

(
dµ

dT
Dθ̂ +

d2µ

dT 2
DTθ̂

)
(αDW − βDU)

]
. (8.9c)

The continuity equation is

i(αU+βW − ω)%̂+ ρ(Dv̂ + iα̃ũ) +Dpv̂ = 0. (8.9d)

The energy equation is

ρ[i(αU + βW − ω)θ̂ +DTv̂] =

− (γ − 1)(Dv̂ + iα̃ũ) +
γµ

PrR

{
D2θ̂ −

(
α2 + β2

)
θ̂ +

1

κ

[
dκ

dT
D2T +

d2κ

dT 2
(DT )2

]
θ̂

+
1

κ

dκ

dT
DTDθ̂

}
+ γ(γ − 1)M2

1

1

R

{
2iµ (αDU + βDW ) v̂ +

dµ

dT

(
DU2 +DW 2

)
θ̂

+
2µ

α2 + β2
[(αDU + βDW ) α̃Dũ+ (αDW − βDU) α̃Dw̃]

}
. (8.9e)

The equation of state is

p̂ =
%̂

ρ
+
θ̂

T
. (8.9f)

To reiterate, in these equations the eigenfunctions of the fluctuations are functions only of y and are denoted
by a carent or a tilde; the mean-flow velocities U and W are also functions of y, as are the other mean-flow
quantities: density ρ (= 1/T ), temperature T , viscosity coefficients µ and λ, thermal conductivity coefficient
κ, and Prandtl number. The specific heats are constant. The reference velocity for U and W is the same as
for R and M1, and the reference length for y is the same as in R.
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8.4 First-order equations

8.4.1 Eighth-order system

Equations 8.9 are the basic equations of the compressible stability theory, but are not yet in a form suitable
for numerical computation. For this purpose we need a system of first-order equations as in Section 2.5.2.
With the dependent variables defined by

Z1 = αû+ βŵ, Z2 = DZ1, Z3 = v̂,

Z4 =
p̂

γM2
1

, Z5 = θ̂, Z6 = Dθ̂, (8.10)

Z7 = αŵ − βû, Z8 = DZ7,

Equations 8.9 can be written as eight first-order differential equations

DZi(y) =

8∑
j=1

aij(y)Zi(y), (i = 1, 8), (8.11)

and the fact that this reduction is possible proves that Eqs. 8.9 constitute an eight-order system. The lengthy
equations for the matrix elements are listed in Appendix A.

The boundary conditions are

Z1(0) = 0, Z3(0) = 0, Z5(0) = 0, Z7(0) = 0,

Z1(y), Z3(y), Z5(y), Z7(y) are bounded as y →∞. (8.12)

8.4.2 Sixth-order system

Equations 8.11 can be solved by the same numerical techniques as used for the fourth-order system of
incompressible theory. However, the fact that there are 16 real equations and four independent solutions
means that the computer time required to calculate an eigenvalue is increased by several times. It is
therefore important to know if it is possible to make use of a system of lesser order, as in the determination
of eigenvalues. We note that for a 2D wave in a 2D boundary layer, the system already is of sixth order,
as there can be no velocity component, either mean for fluctuating, in the z direction. Is there an exact
reduction available from eighth to sixth order? The answer, unfortunately, as mentioned by Dunn and Lin
(1955) and explicitly by Reshotko (1962), is no.

The theory of Dunn and Lin (1955) achieved the reduction to sixth order by an order of magnitude
argument valid for large Reynolds numbers. The motivation was to put the equations in a form where an
improved 2D asymptotic theory could be applied to oblique waves in a 2D boundary layer. However, neither
this theory nor the direct numerical solutions of the Dunn-Lin sixth-order system of equations, turned out
to give adequate numerical results above a low supersonic Mach number.

We may observe from the coefficient matrix of Eq. 8.11 listed in Appendix A that the only term that
couples the first six equations to the last two is a68. This coefficient comes from the last term of the energy
equation (8.9e), and is one of four dissipation terms. It is the product of the gradient of the mean velocity

normal to ~k and the gradient of the fluctuation velocity in the same direction. It was proposed by Mack
(1969) to simply set this term equal to zero, and use the resultant sixth-order system for the calculation of
eigenvalues. The numerical evidence, as discussed further in Section 10.4, is that except near the critical
Reynolds number this approximation gives amplification rates within a few percent of those obtained from
the full eighth-order system, and is most accurate at higher Mach numbers.

8.5 Uniform mean flow

In the freestream U = U1, W = W1, T = 1, µ = 1, κ = 1/Pr1, all y derivatives of mean-flow quantities
are zero, and Eqs. 8.11 reduce to a system of equations with constant coefficients. In spite of the greater
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complexity of these equations compared to those for incompressible flow, we are still able to arrive at
analytical solutions. The lengthy derivation is given in Appendix B (Mack, 1965a). The exact freestream
solutions are the ones to use to calculate the initial values for a numerical integration of Eqs. 8.11, but they
do not lend themselves to a ready physical interpretation. For this purpose, we examine the limit of large
Reynolds number. The characteristic values simplify to

λ1,2 = ∓
[
α2 + β2 −M2

1 (αU1 + βW1 − ω)
2
]1/2

, (8.13a)

λ3,4 = ∓ [iR (αU1 + βW1 − ω)]
1/2

, (8.13b)

λ5,6 = ∓ [iPrR (αU1 + βW1 − ω)]
1/2

, (8.13c)

λ7,8 = λ3,4. (8.13d)

We can identify our solutions as, in order, the inviscid solution, the first viscous velocity solution, a viscous
temperature solution, which is new and does not appear in the incompressible theory, and the second viscous
velocity solution. We shall only use the upper signs in what follows, as these are the solutions which enter
the eigenvalue problem.

The components of the characteristic vector of the inviscid solution are

A
(1)
1 = −i

(
α2 + β2

)1/2
, (8.14a)

A
(1)
3 =

(
α2 + β2 −M2

1 (αU1 + βW1 − ω)
2
)1/2

(α2 + β2)
1/2

, (8.14b)

A
(1)
4 =

i (αU1 + βW1 − ω)

(α2 + β2)
1/2

, (8.14c)

A
(1)
5 =

i(γ − 1)M2
1 (αU1 + βW1 − ω)

(α2 + β2)
1/2

. (8.14d)

The normalization has been changed to correspond to the incompressible solutions of Eq. 2.50. It can be
noted that these expressions are correct when we set M1 = 0.

The components of the characteristic vector corresponding to the first viscous velocity solution are

A
(3)
1 = 1, (8.15a)

A
(3)
3 =

i

[iR (αU1 + βW1 − ω)]
1/2

, (8.15b)

A
(3)
4 = 0, A

(3)
5 = 0. (8.15c)

This solution is identical to the λ3 incompressible solution only in the limit of large Reynolds numbers.
The components of the characteristic vector corresponding to the viscous temperature solution are

A
(5)
1 = 0, (8.16a)

A
(5)
3 = − i (αU1 + βW1 − ω)

1/2

(iPrR)1/2
, (8.16b)

A
(5)
4 = 0, (8.16c)

A
(5)
5 = 1. (8.16d)

The components of the characteristic vector corresponding to the second viscous velocity solution are

A
(7)
1 = 0, A

(7)
3 = 0, A

(7)
4 = 0, A

(7)
5 = 0, (8.17a)

A
(7)
7 = 1, (8.17b)

A
(7)
8 = −

[
α2 + β2 + iR (αU1 + βW1 − ω)

]1/2
. (8.17c)
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This solution is exact and is the same spanwise viscous wave solution as in incompressible flow.
We may observe that the viscous velocity solutions have only fluctuations of velocity, not of pressure or

temperature. The velocity fluctuations in the x, z plane are in the direction of ~k for the first solution, and
are normal to ~k for the second solution which is periodic only in time. The viscous temperature solution
has no velocity fluctuations in the x, z plane, or pressure fluctuations. We may regard these solutions as the
responses to sources of ũ, w̃ and θ̂, and to emphasize this fact the respective solutions have been normalized
to make these quantities unity. The second viscous velocity solution still has the interpretation of a normal
vorticity wave, as in the incompressible flow, but this wave cannot exist as a pure mode in the boundary
layer (Squire mode) because of the a68 dissipation term that couples the latter two of Eqs. 8.11 to the first
six equations.
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Chapter 9

Compressible Inviscid Theory

9.1 Inviscid equations

In compressible flow, even flat-plate boundary layers have inviscid instability, and this instability increases
with increasing Mach number. Therefore, the inviscid theory is much more useful in arriving at an under-
standing of the instability of compressible boundary layers than it is at low speeds. Indeed the initial detailed
numerical working out of the viscous theory (Mack, 1969) was greatly facilitated by the insight offered by
the inviscid theory. In the limit of infinite Reynolds number, Eqs. 8.9 reduce to

ρ [i (αU + βW − ω) α̃ũ+ (αDU + βDW ) v̂] = −i
(
α2 + β2

)( p̂

γM2
1

)
, (9.1a)

iρ (αU + βW − ω) v̂ = −Dp̂ 1

γM2
1

, (9.1b)

i (αU + βW − ω) α̃w̃ + (αDW − βDU) v̂ = 0, (9.1c)

i (αU + βW − ω) %̂+ ρ
(
Dv̂ + iα̃Ũ

)
+Dρv̂ = 0, (9.1d)

ρ
[
i (αU + βW − ω) θ̂ +DTv̂

]
= −(γ − 1)

(
Dv̂ + iα̃Ũ

)
, (9.1e)

p̂ =
%̂

ρ
+
θ̂

T
. (9.1f)

We note that the w̃ momentum equation, Eq. 9.1c, and the energy equation, Eq. 9.1e, are decoupled from
the other equations. Therefore, we can eliminate α̃ũ and %̂ from the latter to arrive at the following two
first-order equations for v̂ and p̂:

(αU + βW − ω)Dv̂ = (αDU + βDW ) v̂ + i
(
α2 + β2

)(
T −M2

1

αU + βW − ω
α2 + β2

)(
p̂

γM2
1

)
, (9.2a)

D

(
p̂

γM2
1

)
= −iρ (αU + βW − ω) v̂. (9.2b)

These equations are the 3D compressible counterparts of Eqs. 3.12. The boundary conditions are

v̂(0) = 0, v̂(y) is bounded as y →∞. (9.3)

The inviscid equations can be written in a simplified form if we introduce the Mach number

M =
(αU + βW − ω)M1

(α2 + β2)
1/2

T 1/2
. (9.4)

For a temporal neutral wave, M is real and is the local Mach number of the mean flow in the direction of
the wavenumber vector ~k relative to the phase velocity ωr/k. In all other cases, M is complex, but even so
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we shall refer to it as the relative Mach number. In terms of M , Eqs. 9.2 simplify to

D

(
v̂

αU + βW − ω

)
= i
(
1−M2

)( p̂

γM2

)
, (9.5a)

Dp̂ = −iγM2

(
α2 + β2

)
v̂

αU + βW − ω
. (9.5b)

We observe that these equations are identical to two-dimensional equations (β = 0) when written in the tilde

variables of Eq. 2.37. Therefore, inviscid instability is governed by the mean flow in the direction of ~k, just
as for incompressible flow. Either Eqs. 9.5 or 9.2 can be used for numerical integration, but the latter have
the advantage that v̂ is a better behaved function near the critical point than is v̂/(αU + βW − ω).

Equation 9.5a is the familiar linearized pressure-area relation of one-dimensional flow. The quantity
v̂/(αU + βW −ω) is the amplitude function of the streamtube area change. The other flow variables can be
written in a similar manner as

Ũ = i

[
DŨ

v̂

α̃Ũ − ω
+

1

α̃
(α̃Ũ − ω)

1

1−M2
D

(
v̂

α̃Ũ − ω

)]
, (9.6a)

ω̂ = i

[
DT

v̂

α̃Ũ − ω
− (γ − 1)T

1

1−M2
D

(
v̂

α̃Ũ − ω

)]
, (9.6b)

%̂ = i

[
Dρ

v̂

α̃Ũ − ω
− ρ M2

1−M2
D

(
v̂

α̃Ũ − ω

)]
, (9.6c)

w̃ = iDW̃
v̂

α̃Ũ − ω
. (9.6d)

where we have used the tilde variables for simplicity. When the second terms of these equations are written
with p̂ in place of v̂/(α̃Ũ), they can be readily recognized as the linearized momentum equation, the isentropic
temperature-pressure relation, and the isentropic density-pressure relation, respectively. The first terms are
in the nature of source terms, and arise from the combination of a vertical fluctuation velocity and a mean
shear. Because Eq. 9.6d is an equation for the vertical vorticity component α̃w̃, only the source term is
present.

A manipulation of Eqs. 9.1 leads to a single second-order equation for v̂:

D

[
(α̃Ũ − ω)Dv̂ − α̃DUv̂

1−M2

]
− (α2 + β2)(α̃Ũ − ω)v̂ = 0. (9.7)

This equation, which in 2D form was used by Lees and Lin (1946), is the 3D compressible counterpart of

the Rayleigh equation. A second-order equation for v̂/(α̃Ũ − ω) follows directly from Eq. 9.5:

D2

(
v̂

α̃Ũ − ω

)
+D

[
ln

(
M2

1−M2

)]
D

(
v̂

α̃Ũ − ω

)
− α̃2(1−M2)

v̂

α̃Ũ − ω
= 0. (9.8)

The corresponding equation for p̂ is

D2p̂−D
[
ln
(
M2
)]
Dp̂−

(
α2 + β2

) (
1−M2

)
p̂ = 0. (9.9)

9.2 Uniform mean flow

In the freestream, Eq. 9.9 reduces to

D2p̂−
(
α2 + β2

) (
1−M2

1

)
p̂ = 0. (9.10)

The solution which satisfies the boundary condition at infinity is

p̂

γM2
1

= i

[
αU + βW − ω
(α2 + β2)

1/2

]
exp

[
−
(
α2 + β2

)1/2 (
1−M2

1

)1/2
y
]
, (9.11)
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which agrees with Eq. 8.14c. Equations 9.11 and 8.14b provide the initial values for the numerical integration.
The freestream solutions may be classified into three groups: subsonic waves with M2

1 < 1; sonic waves
with M2

1 = 1; and supersonic waves with M2
1 > 1. Neutral supersonic waves are Mach waves of the relative

flow, and can exist as either outgoing on incoming waves. True instability waves, which must satisfy the
boundary condition at y = 0 as well as infinity are almost all subsonic, but eigenmodes which are supersonic
waves of the outgoing family in the freestream have been found for highly cooled boundary layers (Mack,
1969). A combination of incoming and outgoing waves permits the boundary condition at y = 0 to be
satisfied for any combination of α, β, and ω, as pointed out by Lees and Lin (1946). It is when only one
family of waves is present that we have an eigenvalue problem. The combination of both families is the basis
of the forcing theory presented in Chapter 11.

9.3 Some mathematical results

The detailed study of the two-dimensional inviscid theory carried out by Lees and Lin (1946) established a
number of important results for temporal waves. Lees and Lin classified all instability waves as subsonic,
sonic, or supersonic, depending on whether the relative freestream Mach number M1 is less than, equal to,
or greater than one. Their chief results are:

(i) The necessary and sufficient condition for the existence of a neutral subsonic wave is that there is
some point ys > yo in the boundary layer where

D (ρDU) = 0, (9.12)

and yo is the point at which U = 1− 1/M1. The phase velocity of the neutral wave is cs, the mean velocity
at ys. This necessary condition is the generalization of Rayleigh’s condition for incompressible flow that
there must be a point of inflection in the velocity profile for a neutral wave to exist. The point ys, which
plays the same role in the compressible theory as the inflection point in the incompressible theory, is called
the generalized inflection point. The proof of sufficiency given by Lees and Lin requires M to be everywhere
subsonic.

(ii) A sufficient condition for the existence of an unstable wave is the presence of a generalized inflection
point at some y > yo, where yo is the point at which U = 1−1/M1. The proof of this condition also requires
M to be subsonic.

(iii) There is a neutral sonic wave with the eigenvalues α = 0, c = co = 1− 1/M1.
(iv) If M2 < 1 everywhere in the boundary layer, there is a unique wavenumber αs corresponding to cs

for the neutral subsonic wave.
Lees and Lin obtained these results by a direct extension of the methods of proof used for incompressible

flow. The necessary condition for a neutral subsonic wave was derived from the discontinuity of the Reynolds
stress τ = −〈uv〉 at the critical point yc. As in incompressible flow, τ is constant for a neutral inviscid wave
except possibly at the critical point. For ωi = 0,

τ (yc + 0)− τ (yc − 0) =
π

α

[
D (ρDU)

DU

]
c

〈v2
c 〉. (9.13)

Equation 9.13 is the same as Eq. 3.9 in the incompressible theory except that D(ρDU) appears in place of
D2U . Since τ is zero at the wall and in the freestream by the boundary conditions for a subsonic wave, it
follows that D(ρDU) must be zero at yc. We may also note that for a neutral supersonic wave, where c < c0
and τ(yc+0) = (α2/2)(M2−1)1/2 from the freestream solutions, the discontinuity at the critical point must
equal this value of τ and the phase velocity must be other than Us.

At this point we can examine the numerical consequences of the finding that neutral and unstable waves
depend on the existence of a generalized inflection point. For the Blasius boundary layer, D2U is negative
everywhere except at y = 0. However, for a compressible boundary layer on an insulated flat plate, D(ρDU)
is always zero somewhere in the boundary layer. Consequently, all such boundary layers are unstable to
inviscid waves. Figure 9.1 shows that cs, the mean velocity at the generalized inflection point and thus
the phase velocity of the neutral subsonic wave, increases with increasing freestream Mach number M1 in
accordance with the outward movement of the generalized inflection point. If we recall from Section 6 that
inviscid instability increases for the adverse pressure-gradient Falkner-Skan profiles as the inflection point
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moves away from the wall, we can expect in this instance that inviscid instability will increase with increasing
Mach number. Figure 9.1 also includes both c0, the phase velocity of a neutral sonic wave, and the phase
velocity for which M = −1 at the wall. In the exact numerical solutions of the boundary-layer equations
which were used for Fig. 9.1, the wall is insulated and the freestream temperature T ∗1 is characteristic of
wind-tunnel conditions. The stagnation temperature is held constant at 311 K until, with increasing M1,
T ∗1 drops to 50 K. For higher Mach numbers, T ∗1 is held constant at 50 K.

Figure 9.1: Phase velocities of 2D neutral inflectional and sonic waves, and of waves for which relative
supersonic region first appears. Insulated wall, wind-tunnel temperatures.

For a wave to be subsonic relative to the freestream, and hence have vanishing amplitude at y →∞ even
when neutral, c must be greater than c0. It is often said that only subsonic waves are considered in stability
theory, but this statement is not entirely correct. It is true that the neutral subsonic wave with eigenvalues
αs, cs can only exist when cs > 1−1/M1. However, this does not rule out amplified and damped waves with
c < 1 − 1/M1, or even neutral supersonic waves with a c different from cs. Examples of such waves have
been found, all of which satisfy the boundary conditions at infinity and so are solutions of the eigenvalue
problem. For ωi 6= 0, the amplitudes of outgoing amplified and incoming damped waves vanish at infinity
regardless of the value of c; for neutral waves, the amplitude will only be bounded at infinity when c < c0.
What does turn out to be true is that the most unstable waves are always subsonic. Furthermore, for one
class of waves, the amplified first-mode waves, the phase velocity is always between c0 and cs. This result
has important consequences.

9.4 Methods of solution

The methods for obtaining solutions of the inviscid equations for boundary-layer profiles have been patterned
after corresponding methods in incompressible flow. Lees and Lin (1946) developed power-series solutions
in α2, and also used the generalizations of Tollmein’s incompressible solutions

v̂1 (y) = (y − yc)P1 (y − yc) , (9.14a)

v̂2 (y) = P2 (y − yc) +

(
T 2

DU3

)
c

[D (ρDU)]c v̂1 (y) ln (y − yc) , y > yc. (9.14b)

For y < yc, ln(y−yc) = ln |y−yc|−iπ as for incompressible flow. The leading terms of P1 and P2 are DUc and
Tc/DUc, respectively, so that v̂1 and v̂2 are normalized here in a different manner than in Section 3.1. These

77



solutions have been worked out in more detail by Reshotko (1960). Both v̂ and û have the same analytical
behavior as in compressible flow. What is new here is the temperature fluctuation, which, according to
Reshotko, has the behavior

θ̂ ≈ 1

y − yc
+

(
T

DU

)
c

[D (ρDU)]c ln (y − yc) + · · · . (9.15)

Hence, even for a neutral subsonic wave, where [D(ρDU)]c = 0 and v̂ and û are both regular, θ̂ has a
singularity at yc.

Two methods have been devised for the numerical integration of the inviscid stability equations. The first
method (Lees and Reshotko, 1962) transforms the second-order linear equation into a first-order nonlinear
equation of the Riccati type. This equation is solved by numerical integration except for the region around
the critical point, where the power series in y − yc are used. The second method (Mack, 1965a) is a
generalization to compressible flow of Zaat’s (1958) method. This method has already been described in
Section 3.2. For neutral and damped solutions, the contour of integration is indented under the singularity,
just as for compressible flow.

9.5 Higher modes

9.5.1 Inflectional neutral waves

Although the Lees-Lin proof for neutral subsonic waves that αs is a unique function of cs was dependent
on M2 < 1, and although Lees and Reshotko (1962) mentioned the possibility that αs may not be unique
for M2 > 1, no serious consideration was given to the possibility of multiple solutions until the extensive
numerical work of Mack (1963, 1964, 1965b) brought them to light. Similar multiple solutions were found
independently at about the same time by Gill (1965b, paper presented in 1964) in his study of “top-hat”
jets and wakes. With the benefit of hindsight, it is actually rather easy to demonstrate their existence. The
inviscid equations for v̂/(α̃Ũ−ω) and p̂, Eqs. 9.8 and 9.9, quite evidently have a different analytical character
depending on whether M2 is less than or greater than unity. It is instructive, as suggested by Lees [private
communication (1964)], to consider α2 large enough so that the first-derivative term can be neglected. Then
Eq. 9.8 reduces to

D2

[
v̂

α̃Ũ − ω

]
− α̃2

(
1−M2

) [ v̂

α̃Ũ − ω

]
= 0. (9.16)

When M2 < 1, the solutions of Eq. 9.16 are elliptic, and it is under this circumstance that Lees and Lin
proved the uniqueness of αs. However, when M2 > 1, Eq. 9.16 becomes a wave equation, and as in all
problems governed by a wave equation, we can expect there to be an infinite sequence of wavenumbers that
will satisfy the boundary conditions. We may note that for a subsonic wave (this terminology still refers to
the freestream) and the usual sort of boundary-layer profiles, the relative supersonic region occurs below the
critical point where M < 0.

If ya is the y where M2 = 1, the approximate solutions of Eq. 9.16 of the WKB type are

v̂

α̃Ũ − ω
= ± sin

[
α̃sn

∫ y

0

(
M2 − 1

)1/2
dy

]
, y < ya, (9.17a)

v̂

α̃Ũ − ω
= −i exp

[
−α̃sn

∫ y

ya

(
1−M2

)1/2
dy

]
, y > ya, (9.17b)

where Eq. 9.17b follows from the boundary condition v̂(0) = 0. We have written α̃s as α̃sn. The subscript s
denotes a neutral subsonic solution as before; the subscript n refers to the multiple solutions. The constant
in Eq. 9.17b is chosen as −i to make p̂ real and positive for y > ya. Either sign is possible for y > ya. Since p̂
is continuous and finite at y = ya, D[v̂/(α̃Ũ −ω)], from Eq. 9.5a, must go to zero as y → ya as does M2− 1.

The derivative of v̂/(α̃Ũ − ω) gives a factor (M2 − 1)1/2, and the required factor of (M2 − 1)1/2 can only
come from the cosine having a zero at ya. Consequently,
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cos

[
α̃sn

∫ ya

0

(
M2 − 1

)1/2
dy

]
= 0, (9.18a)

and

α̃sn

∫ ya

0

(
M2 − 1

)1/2
dy =

(
n− 1

2

)
, n = 1, 2, 3, . . . . (9.18b)

Equation 9.18b is the final result, and demonstrates that there is an infinite sequence of discrete neutral
wavenumbers with the phase velocity cs. The difference between adjacent values of α̃sn is

α̃s(n+1) − α̃sn = π

(∫ ya

0

(
M2 − 1

)1/2
dy

)−1

. (9.19)

We may also observe that according to Eq. 9.18b, the sequence of values of 2α̃sn is 1, 3, 5, 7, . . .. This result
was first noted and given a physical explanation by Morkovin [private communication (1982)]. Because
Eq. 9.16 is only approximate, the magnitude of α̃sn, the difference formula, and the ratio sequence are not
expected to be numerically correct. However, as we shall see below, with an important exception they are
either correct, or approximately correct.

When the numerical integration of Eqs. 9.2 is carried out for 2D waves with c = cs and ωi = 0 for the
insulated-wall flat-plate boundary layers described in Section 9.3, the αsn which are found by the eigenvalues
search procedure are shown in Fig. 9.2. The solution for each n will be referred to as a mode: n = 1 is the
first mode, n = 2 the second mode, etc. The wavenumbers of the first mode were first computed by Lees and
Reshotko (1962). With c = cs, a ya where M2 = 1 occurs first at M1 = 2.2 (ya = 0). With increasing M1,
the relative sonic point ya moves out into the boundary layer, and αsn varies in inverse proportion to ya as
required by Eq. 9.18b. No higher modes with c = cs could be found numerically for M1 < 2.2, in agreement
with the theory given above.

Figure 9.2: Multiple wavenumbers of 2D inflectional neutral waves (c = cs). Insulated wall, wind-tunnel
temperatures.

A prominent feature of Fig. 9.2 is that the upward sloping portion of the first-mode curve between M1 = 2
and 4.5 is in a sense continuous through the other modes, i.e., there is a Mach number range for each mode
where the αsn vs. M1 curve has a positive slope. The end point of this region for one mode is close to the
starting point of a similar region for the next higher mode. The approach becomes closer as M1 increases.
The significance of these intervals of positive slope is that they provide the exceptions to the correctness, or
approximate correctness, of the results given by, or deduced from, Eqs. 9.18b. Indeed we could well identify
these modes as the “exceptional” modes.

With the wavenumbers of the multiple neutral waves established, the next step is to examine the eigen-
functions. For this purpose, the eigenfunction p̂/(γM2

1 ) is shown in Fig. 9.3 for the first six modes at
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M1 = 10. The first thing to note is that the number of zeroes in p̂ is one less than the mode number n.
For example, the second mode has one zero, and p̂(0) is 180◦ out of phase with p̂(δ); the third mode has
two zeroes and p̂(0) is in phase with p̂(δ). The number of zeroes in p̂(y) is the surest identification of the
mode under consideration. By keeping track of the phase difference between p̂(0) and p̂(δ), it is possible to
determine when there is a change from one mode to another.

Figure 9.3: Pressure-fluctuation eigenfunctions of first six modes of 2D inflectional neutral waves (c = cs) at
M1 = 10. Insulated wall, T ∗1 = 50 K.

The appearance of the eigenfunctions in Fig. 9.3 confirms the simple theory given above: there is an
infinite sequence of periodic solutions in the supersonic relative flow region which can satisfy the boundary
conditions. The magnitude of p̂(0) is a minimum for the fourth mode [p̂(δ) is the same for all modes]. Since
the fourth mode at M1 = 10 is on the upward sloping portion of the eigenvalue curve in Fig. 9.2, this
is another indication of the special nature of such neutral solutions. For other modes, p̂(0)/p̂(δ) tends to
become large away from n = 4, and tends to infinity as n→∞.

There is one important difference between the simple theory and Fig. 9.3. According to the theory, p̂(δ)
is positive for all modes; there are no zeroes in the interval y > ya, and the number of zeroes in y < ya
increases by one for each successive mode. We see from Fig. 9.3 that p̂(δ) is negative for n > 4, and the
number of zeroes in y < ya is the same for n = 5 as for n = 4. The total number of zeroes increases by one
from n = 4 to n = 5 only because of the zero in y > ya. However, we note that the “exceptional” mode is
extraneous to the simple theory, and preserves something of a first-mode character which probably betrays
a different physical origin from the other modes. Indeed, the other higher modes are nothing more than
sound waves which reflect back and forth between the wall and the sonic line of the relative flow at y = ya as
first suggested by Lees and Gold (1964). Morkovin’s theory is based on this idea, and its duplication of the
wavenumber ratio sequence 1,3,5,... attests to its correctness. The “exceptional” modes are not part of this
theory; they are perhaps vorticity waves associated with the generalized inflection point as are incompressible
and low Mach number first-mode waves. In this view, the modes which have been identified in Figs. 9.2
and 9.3 as first-mode waves for M1 > 5 are not first-mode waves at all; this distinction is reserved for the
modes whose wavenumbers increase monotonically with increasing M1. However, we shall continue to refer
to n = 1 as the first mode.

9.5.2 Noninflectional neutral waves

A further consequence of a region of supersonic relative flow in the boundary layer is the existence of a
class of neutral waves which is completely different from anything encountered in the incompressible theory.
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These waves are characterized by having phase velocities in the range 1 ≤ c ≤ 1 + 1/M1. For each phase
velocity there is an infinite sequence of wavenumbers, just as for the inflectional neutral waves. A wave with
c = 1 is at rest with respect to the freestream; a wave with c = c02 = 1 + 1/M1 propagates downstream
relative to U∗1 with the freestream speed of sound. The Lees-Lin neutral sonic wave propagation upstream
relative to U∗1 with the freestream speed of sound.

All of the 1 ≤ c ≤ 1 + 1/M1 waves are subsonic waves, and, because D(ρDU) = 0 in the freestream,
there is no discontinuity in the Reynolds stress and the necessary condition for the existence of a subsonic
neutral wave is satisfied. Unlike the inflectional neutral waves, D(ρDU) does not have to be zero in the
boundary layer, and the 1 ≤ c ≤ 1+1/M1 waves exist for any boundary layer subject only to the requirement
that M2 > 1 somewhere. The importance of the c = 1 neutral waves is that in the absence of an interior
generalized inflection point they are accompanied by a neighboring family of unstable waves with c < 1.
Consequently, a compressible boundary layer is unstable to inviscid waves whenever M2 > 1, regardless of
any other feature of the velocity and temperature profiles.

Figure 9.4: Multiple wavenumbers of 2D noninflectional neutral waves (c = 1). Insulated wall, wind-tunnel
temperatures.

If we examine the inviscid equations 9.2, we see that when c > 1 they are no longer singular; i.e., there
is no critical layer. Even when c = 1, and the critical layer is in a sense the entire freestream, Eq. 9.2a is
still not singular because DU/(U − 1) and p̂(y)/(U − 1) both have finite limits as y → yδ. We call this class
of solutions the noninflectional neutral waves. These waves persist to low subsonic Mach numbers, because,
except at M1 = 0, it is always possible to find a c large enough so that M = −1 somewhere in the boundary
layer.

The approximate theory of the preceding section applies to the noninflectional neutral waves just as well
as to the inflectional neutral waves provided the initialization is changed for c = 1 to make v̂/(αU −ω) finite
in the freestream. This change is needed because with c = 1 the wave motion is confined to the boundary
layer and v̂ must be zero for y > yδ. An infinite sequence of wavenumbers is obtained with the spacing given
by Eq. 9.19, but since c is different from cs the numerical values are not the same as for the inflectional waves.
The wavenumbers obtained from the numerical integration with c = 1 are shown in Fig. 9.4 as functions of
Mach number. These wavenumbers are denoted by α1n, where the first subscript refers to c = 1, and the
second is the mode number. There is now no portion of any wavenumber curve with a positive slope, and
the spacing agrees reasonably well with the approximate formula. The discrepancy is about 10% for the first
two modes, and decreases to about 1% for the fifth and sixth modes.

The eigenfunctions p̂(y) of the first six modes of the noninflectional neutral waves with c = 1 at M1 = 10
are shown in Fig. 9.5. Here the ratio p̂(y)/p̂(0) is plotted, rather than p̂(y) with p̂(δ) fixed as in Fig. 9.3.
The appearance of these eigenfunctions is in complete accord with the simple theory, unlike the inflectional
neutral waves where the modes on the upward sloping portions of the wavenumber curves interrupt the
orderly sequence, and where an outer zero appears in the eigenfunctions for n > 4.
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Figure 9.5: Pressure-fluctuation eigenfunctions of first six modes of 2D noninflectional neutral waves (c = 1)
at M1 = 10. Insulated wall, T ∗1 = 50 K.
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The numerical results for 1 < c < 1 + 1/M1 are similar to those presented for c = 1. Since these waves
have no neighboring unstable or damped waves, they are of less importance in the inviscid theory than the
other neutral waves. Consequently, these waves will not be considered further, and the term noninflectional
neutral wave will refer only to a c = 1 wave. However, we might mention that the viscous counterparts of
the c > 1 waves, which are damped rather than neutral, do have a role to play in certain cases.

9.6 Unstable 2D waves

A detailed discussion of the eigenvalues of amplified and damped waves as a function of Mach number
for the first few modes has been given by Mack (1969). What we are mainly interested in here is the
maximum amplification rate of the various modes, and this is shown in Fig. 9.6, where the maximum
temporal amplification rate is given as a function of Mach number up to M1 = 10. The corresponding
frequencies are shown in Fig. 9.7. We see from Fig. 9.6 that below about M1 = 2.2 the family of boundary
layers we are considering is virtually stable to inviscid 2D waves, and that above M1 = 2.2 the second mode is
the most unstable mode. The latter result holds for 2D waves in all boundary layers that have been studied,
and is one of the features that makes supersonic stability theory so different from the incompressible theory.
Not only is there more than one mode of instability, but it is one of the additional modes that is the most
unstable. Above M1 = 6.5, the first mode is not even the second most unstable mode. The second-mode
amplification rates can be appreciable. At M1 = 5, the amplitude growth over a boundary-layer thickness
is about double what is possible in a Blasius boundary layer at the Reynolds number of the maximum
amplification rate, and about 25% of the maximum growth in a Falkner-Skan separation boundary layer.

Figure 9.6: Effect of Mach number on maximum temporal amplification rate of 2D waves for first four modes.
Insulated wall, wind-tunnel temperatures.

9.7 Three-dimensional waves

In the detailed study of the eigenvalues of unstable 2D first-mode waves (Mack, 1969), it was noted that
the phase velocity is always between c0 and cs. These two velocities are almost identical near M1 = 1.6,
which suggests why boundary layers near that Mach number are almost stable even though the generalized
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Figure 9.7: Effect of Mach number on frequency of most unstable 2D waves for first four modes. Insulated
wall, wind-tunnel temperatures.

inflection point has moved out to Us = 0.38. The inflection point is a fixed feature of the boundary-layer
profile, and so is independent of the wave orientation. The phase velocity cs of a 3D wave is Us cosψ, and
the phase velocity c0 is (1 − 1/M̃1) cosψ, where M̃1 = M1 cosψ. Thus as the wave angle ψ increases from
zero, c0 decreases more than by cosψ, and the difference cs − c0 increases. Consequently, we can expect the
first mode to become more unstable. At the same time the thickness of the supersonic relative flow region,
where one exists, will decrease along with M̃1 and we shall not be surprised to find that the higher modes
become more stable.

Figure 9.8 shows the temporal amplification rate ωi of the first and second modes at M1 = 4.5 as a
function of the frequency ωr for several wave angles. Three-dimensional first-mode waves are indeed more
unstable than 2D waves, and second-mode 3D waves are more stable than the corresponding 2D waves. The
latter result also holds for all of the higher modes. The most unstable first-mode wave is at an angle of
close to 60◦, with an amplification rate about twice the maximum 2D rate and with a frequency a little over
one-half of the frequency of the most unstable 2D wave.

At M1 = 4.5, the unstable regions of the first two modes are separated by a damped region for all wave
angles. However, at M1 = 8.0, Fig. 9.9 shows that for 2D waves the first three modes are merged into a single
unstable region. If we look at Fig. 9.2 we see that at this Mach number the exceptional mode is the third
mode. Thus we can note another feature of the neutral wavenumbers αsn of these modes: They serve as the
“end points” of the merged unstable regions of the modes lying below them. As the wave angle increases
from zero and M̃1 decreases, the merging is still in general accord with Fig. 9.2 for M̃1, as is confirmed by
the calculation of α̃sn. The same pattern of upward sloping exceptional wave numbers is found for oblique
waves as for 2D waves (Mack, 1969). For ψ = 60◦, the second-mode is stable; for ψ = 56◦, there are still
second-mode unstable waves, as can be verified by examining the phase change across the boundary layer of
the pressure fluctuations, even though no peak is visible on the curve of Fig. 9.9.

In Fig. 9.10, the maximum temporal amplification rate with respect to frequency is plotted against the
four Mach numbers 4.5, 5.8, 8.0 and 10.0. At all of these Mach numbers the most unstable first-mode wave
is at an angle of between 50◦ and 60◦, and has a maximum amplification rate that is roughly double the
most unstable 2D wave. The effect of Mach number on the maximum first-mode amplification rate with
respect to both frequency and wave angle is shown in Fig. 9.11. The wave angle of the most unstable wave
is noted on the figure to within 5◦, and the maximum 2D amplification rates are shown for comparison. An
interesting change in the relationship between the 2D and 3D amplification rates takes place for M1 < 4. The
3D maximum amplification rate is no longer only double the 2D rate as at higher Mach numbers; instead, at
M1 = 3.0 the ratio of the 3D rate to the 2D rate is 5.8, at M1 = 2.2 it is 33, and at M1 = 1.8 it is 130. We
recall from Fig. 9.1 that it is near M1 = 1.6 that the difference cs − c0 is the smallest. Therefore, the sonic
limit acts as a severe constraint on the amplification of 2D waves at low Mach numbers. When this constraint
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Figure 9.8: Temporal amplification rate of first and second modes vs. frequency for several wave angles at
M1 = 4.5. Insulated wall, T ∗1 = 311 K.

Figure 9.9: Temporal amplification rate as a function of wavenumber for 3D waves at M1 = 8.0. Insulated
wall, T ∗1 = 50 K.
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is removed, as it is for 3D waves, the amplification rates increase sharply. We may consider the 3D maximum
amplification rate as the one that properly reflects the inherent instability of a given boundary-layer profile.

Figure 9.10: Effect of wave angle on maximum temporal amplification rate of first and second-modes at
M1 = 4.5, 5.8, 8.0 and 10.0. Insulated wall, wind-tunnel temperatures.

9.8 Effect of wall cooling

Perhaps the most celebrated result of the early stability theory for compressible boundary layers was the
prediction by Lees (1947) that cooling the wall stabilizes the boundary layer. This prediction was made on
the basis of the asymptotic theory, and a criterion was provided for the ratio of wall temperature to recovery
temperature at which the critical Reynolds number becomes infinite. Although Lees’s original calculations
contained numerical errors, the temperature ratio for complete stabilization was later computed correctly by
a number of authors. The most accurate calculations gave the result that complete stability can be achieved
for 1 < M1 < 9 by sufficient cooling. These calculations can be criticized in three important respects: First,
no indication is given as to how the amplification rate varies with wall temperature; second, the calculations
are for 2D waves only; and third, no account is taken of the existence of the higher modes. In this Section
we shall see that the current inviscid theory can remedy all of these deficiencies.

As the boundary layer is cooled a second generalized inflection point appears for U < 1 − 1/M1. As
the cooling progresses, this second inflection point moves towards the first one and then both disappear for
highly cooled walls. The complete account, as given by Mack (1969), of how these two inflection points
affect the instability of 2D and 3D waves is a lengthy one and also brings in unstable supersonic waves. The
conclusion is that when the generalized inflection points disappear, so do the first mode waves, but the higher
modes, being dependent only on a relative supersonic region, remain. Some results are shown in Fig. 9.12,
where the ratio of the maximum temporal amplification rate to its uncooled value is plotted against the ratio
of wall temperature, Tw, to recovery temperature, Tr, at M1 = 3.0, 4.5, and 5.8 for 3D first-mode waves,
and at M1 = 5.8 for 2D second-mode waves. In each instance, the wave angle given in the figure is the
most unstable. The first-mode waves, even when oblique, can be completely stabilized at the Mach numbers
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Figure 9.11: Effect of Mach number on maximum temporal amplification rates of 2D and 3D first-mode
waves. Insulated wall, wind-tunnel temperatures.

shown, just as originally predicted by Lees (1947). However, the second mode is not only not stabilized, it is
actually destabilized, although if the amplification rate is based on the boundary-layer thickness, the increase
in ωi is just about compensated for by the reduction in yδ and ωiyδ is virtually unchanged by cooling.

As a final result on the effect of cooling, we give Fig. 9.13 which shows the temporal amplification rate
at M1 = 10 as a function of wavenumber for an insulated wall and a highly-cooled wall (Tw/Tr = 0.05).
For the former, the first four modes are merged to form a single unstable region, and the limiting upper
wavenumber is the exceptional wavenumber of Fig. 9.2. For the latter, the unstable regions of the four modes
are separate, as is true at lower Mach numbers for an insulated wall, and the maximum amplification rate
of each mode is about double the uncooled value.
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Figure 9.12: Effect of wall cooling on ratio of maximum temporal amplification rate with respect to both
frequency and wave angle of first and second modes at M1 = 3.0, 4.5, and 5.8 to insulated-wall maximum
amplification rate. Wind-tunnel temperatures.

Figure 9.13: Effect of extreme wall cooling on temporal amplification rates of 2D wave for first four modes
at M1 = 10, T ∗1 = 50 K: Solid line, insulated wall; Dashed line, cooled wall, Tw/Tr = 0.05.
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Chapter 10

Compressible Viscous Theory

The early theoretical work on the viscous stability theory of compressible boundary layers was based on the
asymptotic methods that had proven to be successful for incompressible flow. However, these theories, which
were developed by Lees and Lin (1946), Dunn and Lin (1955), and Lees and Reshotko (1962), turned out to
be valid only up to low supersonic Mach numbers. Some results for insulated-wall flat-plate boundary layers
obtained with the asymptotic method are given in Fig. 10.1, and compared with direct numerical solutions of
the eigenvalue problem. All numerical results in this Section are for the same family of flat-plate boundary
layers used in Section 9. In Fig. 10.1 neutral-stability curves of frequency at M1 = 1.6 and 2.2 as computed
from the Dunn-Lin 1955 theory by Mack (1960) are compared with results obtained by numerical integration
using both the sixth-order simplified equations of Dunn and Lin, and the sixth-order constant Prandtl number
version of the complete stability equations of Appendix A. At M1 = 1.6, the three calculations are in good
agreement for R > 700, but at M1 = 2.2, the agreement between the Dunn-Lin theory and the numerical
solution with the complete equations is poor at all Reynolds numbers. The asymptotic theory is supposed to
solve the simplified equations with an error no larger than the error involved in dropping the missing viscous
terms. It is evident from the numerical solutions of the Dunn-Lin equations in Fig. 10.1, that the equations
are better than the method used to solve them, but even so at M1 = 2.2 the differences compared to the
complete equations are too large to permit their use. However, there is little reason in any case to use these
equations in numerical work, because they are of the same order as the complete 2D equations, and for 3D
waves the sixth-order approximation given in this Section is more accurate.

10.1 Effect of Mach number on viscous instability

The viscous theory must of course be used for all numerical calculations at finite Reynolds numbers. An
important theoretical question that we are able to answer with the viscous theory is the influence of Mach
number on viscous instability. The definition of viscous instability that we use here for classification purposes
is that the maximum amplification rate increases as the Reynolds number decreases. The maximum is with
respect to frequency, and also wave angle for 3D waves, at constant Reynolds number, and the amplification
rate is referenced to L∗ [Eq. 2.57]. A neutral-stability curve with an upper-branch wavenumber which
increases with decreasing Reynolds number, as for the Blasius boundary layer, is an indicator of viscous
instability. We start by examining the curves of neutral stability for 2D waves presented in Fig. 10.2, where
at five Mach numbers the wavenumber is plotted against 1/R to emphasize the higher Reynolds number
region. The neutral curve at M1 = 1.6 is of the same general type as for a low-speed boundary layer with
only viscous instability. The low values of the neutral wavenumbers reflect a drastic weakening of viscous
instability compared to the Blasius boundary layer. We already know from Fig. 9.6 that the maximum
inviscid amplification rate increases sharply for M1 > 2.2. What we see in Fig. 10.2 is that as the Mach
number increases above 1.6, viscous instability continues to weaken and the effect of the increasing inviscid
instability extends to lower and lower Reynolds numbers. Finally, at M1 = 3.8 the influence of inviscid
instability is dominant at all Reynolds numbers, and no trace of viscous instability can be seen. Viscosity
acts only to damp out the inviscid instability, just as for the low-speed Falkner-Skan boundary layers with
a strong adverse pressure gradient. As a result, the instability characteristics of flat-plate boundary layers
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Figure 10.1: Comparison of neutral-stability curves of frequency at (a) M1 = 1.6 and (b) M1 = 2.2. Insulated
wall, wind-tunnel temperatures.
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above M1 = 3 are more like those of a free shear layer than of a low-speed zero pressure-gradient boundary
layer.

Figure 10.2: Effect of Mach number on 2D neutral-stability curves of wavenumber. Insulated wall, wind-
tunnel temperatures.

We have learned in Section 9 that 2D amplification rates above M1 = 1 are strongly influenced by the
constraint of the sonic limit on the phase velocity, and do not represent the true instability of a boundary-
layer profile. Therefore, to get a complete view of the influence of Mach number on viscous instability we
must turn to 3D waves. The instability of 2D and 3D waves up to M1 = 3.0 is summarized in Fig. 10.3, where
the maximum temporal amplification rate is given at M1 = 1.3, 1.6, 2.2, and 3.0 as a function of Reynolds
number up to R = 2000. The most unstable wave angles (to within 5◦) of the 3D waves are shown in the
figure. It is apparent that these angles differ little from the inviscid values except near the critical Reynolds
number at M1 = 1.3. We see that viscous instability, which at M1 = 1.3 is totally responsible for both 2D
and 3D instability at the Reynolds numbers of the figure, decreases with increasing M1 for 3D as well as
for 2D waves. However, there is little change in the maximum 3D amplification rate with increasing Mach
number, in contrast to the large decrease in the maximum 2D amplification rate. At M1 = 3.0, viscosity acts
only to maintain the maximum amplification rate at about the same level down to low Reynolds numbers,
rather than as the main source of instability as at lower Mach numbers.

There are unfortunately no calculations available between M1 = 3.0 and 4.5, but the distribution with
Reynolds number of the maximum temporal amplification rate is given in Fig. 10.4 at M1 = 4.5, 5.8, and
7.0 for wave angles that are approximately the most unstable. All of these waves are first-mode waves. At
M1 = 10 it is difficult to assign a maximum in the first-mode region as the single peak in the ωi vs α curves
for ψ > 50◦ occurs near the transition from the first to the second mode, and 55◦ has been rather arbitrarily
selected as the most unstable angle. In any case, it is clear from Fig. 10.4 that in this Mach number range
there is no viscous instability and the influence of viscosity is only stabilizing.
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Figure 10.3: Distribution of maximum temporal amplification rate with Reynolds number at (a) M1 = 1.3,
(b)M1 = 1.6, (c)M1 = 2.2 and (d)M1 = 3.0 for 2D and 3D waves. Insulated wall, wind-tunnel temperatures.

Figure 10.4: Distribution of maximum first-mode temporal amplification rates with Reynolds number at
M1 = 4.5, 5.8, 7.0 and 10.0. Insulated wall, wind-tunnel temperatures.
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10.2 Second mode

The lowest Mach number at which the unstable second mode region has been located at finite Reynolds
numbers is M1 = 3.0, where the minimum critical Reynolds number Rcr is 13,900 (Mack, 1984b). As
the Mach number increases, the inviscid second-mode maximum amplification rate increases, as shown in
Fig. 9.6, and the unstable second-mode region moves rapidly to lower Reynolds numbers. At M1 = 3.8,
Rcr is 827; at M1 = 4.2 it is 355; and at M1 = 4.5 it is 235. Furthermore, the first and higher-mode
unstable regions go through the same process of successive mergers as they do in the inviscid theory. The
first merger, between the first and second-mode unstable regions, takes place at about M1 = 4.6. Examples
of neutral-stability curves of wavenumber just before merger (M1 = 4.5), and just after merger (M1 = 4.8),
are shown in Fig. 10.5. The shapes of the neutral-stability curves, both before and after merger, are such
as to suggest that viscosity is only stabilizing for all higher modes, and this is confirmed for the 2D second
mode by Fig. 10.6, where the distribution of (ωi)max with Reynolds number is shown for M1 = 4.5, 5.8, 7.0,
and 10.0.

Figure 10.5: Neutral-stability curves of wavenumber for 2D first and second-mode waves at (a) M1 = 4.5
and (b) M1 = 4.8. Insulated wall, wind-tunnel temperatures.

The effect of wave angle on second-mode amplification rates is shown in Fig. 10.7, where (ωi)max is
plotted against wave angle for the same Mach numbers as in Fig. 10.6. This figure is to be compared with
the comparable inviscid results in Fig. 9.10. In both instances, increasing Mach number brings a reduction
in the rapidity with which the maximum amplification falls off with increasing wave angle.

10.3 Effect of wall cooling and heating

Few results have been computed from the viscous theory for boundary layers with cooled and heated walls.
One result, shown in Fig. 10.8, gives the effect of heating and cooling on the stability of a low-speed boundary
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Figure 10.6: Effect of Reynolds number on maximum second-mode temporal amplification rate at M1 = 4.5,
5.8, 7.0 and 10.0. Insulated wall, wind-tunnel temperatures.

Figure 10.7: Effect of wave angle on second-mode temporal amplification rates at R = 1500 and M1 = 4.5,
5.8, 7.0 and 10.0. Insulated wall, wind-tunnel temperatures.
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layer (M1 = 0.05). The x-Reynolds numbers of 2D normal modes for three constant values of the N factor,
ln (A/A0)max, are plotted against the wall temperature ratio Tw/Tr. We see that cooling has a strong
stabilizing effect, and that heating has a strong destabilizing effect. The frequencies that correspond to the
N factors are also strongly affected by the wall temperatures. For example, at Tw/Tr = 0.90, the frequency
for N = 9 is F = 0.157× 10−4; at Tw/Tr = 1.15, it is F = 0.445× 10−4.

Figure 10.8: Effect of wall cooling and heating on Reynolds number for constant ln (A/A0)max at M1 = 0.05.

As an example of the effect of wall cooling at hypersonic speeds, Fig. 10.9 shows 2D neutral curves at
M1 = 5.8 for Tw/Tr = 1.0, 0.65, 0.25, and 0.05. The freestream temperature is 50 K except for the lowest
wall temperature where it is 125 K. When the wall is cooled to Tw/Tr = 0.65, a noticeable stabilization
takes place for the first-mode, but only a narrowing of the unstable wavenumber band can be detected in the
second-mode region. At the other two temperature ratios, there is no unstable first-mode region. The lowest
temperature ratio is of interest because there is no generalized inflection point in the boundary layer, and thus
no αs2 to serve as the limit of the upper branch of the neutral curve. We may observe that the wavenumbers
at the critical Reynolds numbers of the three cooled cases are in the inverse proportion 1.0:0.71:0.48, and
the corresponding boundary-layer thicknesses are in the proportion 1.0:0.69:0.53. Consequently, the length
scale is the controlling factor in the location of the second-mode unstable region in terms of wavenumber.

10.4 Use of sixth-order system for 3D waves

We have already noted in Section 8.5 that only a single dissipation term couples the energy equation 8.9e
to the other equations for a 3D wave in either a 2D or 3D boundary layer, and mentioned the economy
measure proposed by Mack (1969) of using the sixth-order system that results from neglecting this term
for 3D waves. These equations are essentially the 2D equations in the direction of k. In Table 10.1 the
temporal amplification rates computed from the sixth- and eighth-order systems are compared for various
wave angles and Reynolds numbers at five Mach numbers. In all cases the waves are close to the most
unstable first-mode waves at the particular Mach and Reynolds numbers listed. We see that the sixth-order
system is surprisingly good, and can be used at R = 1500 for all Mach numbers with a maximum error of less
than 5%. The error of the sixth-order system, which depends not only on the Mach and Reynolds number,
but also on the wave angle, is usually minimal up to about ψ = 30◦ and can become large for ψ > 70◦.

There are three other dissipation terms in the energy equation besides the coupling term, and their effect
on the amplification rate has also been examined by Mack (1969) at R = 1500 and M1 = 2.2, 5.8, and 10.0.
The wavenumbers were the same as in Table 10.1. At M1 = 2.2, the coupling term has the largest influence
on the amplification rate. However, at the two higher Mach numbers the other terms increase in importance.
Since some terms are stabilizing and others destabilizing, the error with all dissipation terms zero is smaller
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Figure 10.9: Effect of wall cooling on 2D neutral-stability curves at M1 = 5.8, T ∗1 = 50 K.

Table 10.1: Comparison of temporal amplification rates for 3D waves as computed from sixth-order and
eighth-order systems of equations at several Mach numbers

M1 R α ψ ωi × 103 ωi × 103 % difference
6th order 8th order

1.3 500 0.075 45◦ 0.883 0.824 7.2
1.3 1500 0.060 45◦ 1.467 1.445 1.5

1.6 500 0.070 55◦ 0.974 0.874 11.4
1.6 1500 0.050 55◦ 1.384 1.346 2.8

2.2 500 0.055 60◦ 1.198 1.066 12.4
2.2 800 0.045 60◦ 1.391 1.300 7.0
2.2 1500 0.035 60◦ 1.325 1.273 4.1

4.5 500 0.045 60◦ 1.117 1.039 7.5
4.5 1500 0.050 60◦ 1.641 1.613 1.7

5.8 500 0.050 55◦ 0.790 0.736 7.3
5.8 1500 0.060 55◦ 1.403 1.384 1.4

10.0 1500 0.040 55◦ 0.444 0.434 2.3
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at these two Mach numbers than with only the coupling term zero. It is not known how general this result
is, but experience with the Dunn-Lin equations indicates that it is limited to waves with ψ well away from
zero.

The small effect of the dissipation terms on the amplification rates of the 3D waves in the above-mentioned
calculations is in distinct contrast to what happens when the Dunn-Lin equations are used for 2D waves.
The sixth-order system with only the coupling term zero is exact for ψ = 0, unlike the Dunn-Lin equations
where all of the dissipation terms are neglected along with a number of other terms that are supposed to
be of the same order. The differences between the neutral-stability curves in Fig. 10.1 computed directly
from the Dunn-Lin equations and those computed from the complete equations testify to the importance
of the neglected terms. A calculation at M1 = 2.2 and R = 600 for α = 0.045 gave the result that the
maximum 2D amplification rate from the Dunn-Lin equations is 63% larger than when computed from the
complete equations. A more favorable result is obtained at this Mach number for a 60◦ wave with α = 0.045
at R = 1000, where the Dunn-Lin equations give an amplification rate that is 15% too high. This is an
improvement over the 2D results, but still not as good as the result obtained when only the coupling term is
neglected. At M1 = 4.5 and R = 1500, the amplification rate of the most unstable first-mode wave computed
from the Dunn-Lin equations is in error by 23%; the error for the most unstable (2D) second-mode wave is
14%. The conclusion to be drawn is that the Dunn-Lin approximation is too severe, and the equations are
unsuitable for numerical work above about M1 = 1.6. On the contrary, the sixth-order system with only the
coupling term neglected can be used for numerical computations where high accuracy is not important, and
they offer a substantial saving in computer time and expense.

10.5 Spatial theory

Both the theoretical and numerical aspects of the stability of compressible boundary layers were worked out
almost completely on the basis of the temporal theory. In contrast, almost all stability calculations are now
routinely done with the spatial theory. Two exceptions are the SALLY (Srokowski and Orszag, 1977) and
COSAL (Malik and Orszag, 1981) codes for 3D boundary-layer stability, which calculate eigenvalues from
the temporal theory and use the 3D Gaster transformation to convert to spatial eigenvalues. This approach,
which introduces a small error into the calculation has the advantage of allowing the use of powerful matrix
methods. The COSAL code exploits this possibility by providing a global eigenvalue search which relieves
the user from the necessity of making an initial eigenvalue guess.

Some of the extensive temporal calculations of Mack (1969) have been recalculated by El-Hady and
Nayfeh (1979) using the spatial theory. All findings were in accord with the temporal calculations. A recent
series of spatial calculations by Wazzan et al. (1984) found important differences with the calculations of
Mack, but there is good reason to believe that the new calculations are not correct (Mack, 1984b).

As an example of the same calculation performed with the temporal and spatial theories, Figs. 10.10
and 10.11 give the respective maximum amplification rates of the most unstable first and second-mode
waves at R = 1500 as a function of freestream Mach number. The differences between the temporal and
spatial first-mode curves are due to the increase in the group velocity from about 0.4 at M1 = 0 to near 1.0
at high Mach number. However, both curves reflect the fact that at first increasing Mach number brings
a reduction in the maximum amplification rate because of the weakening of viscous instability, then the
increasing inviscid instability becomes dominant, and finally the increasing boundary-layer thickness causes
a proportionate reduction in the amplification rate. Furthermore, it is important to keep in mind that both
the spatial theory and the temporal theory plus the Gaster transformation give almost identical values of
the amplitude ratio, and so either can be used in transition-prediction calculations.
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Figure 10.10: Effect of Mach number on the maximum temporal amplification rate of first and second-mode
waves at R = 1500. Insulated wall, wind-tunnel temperatures.

Figure 10.11: Effect of Mach number on the maximum spatial amplification rate of first and second-mode
waves at R = 1500. Insulated wall, wind-tunnel temperatures.
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Chapter 11

Forcing Theory

11.1 Formulation and numerical results

The structure of linear stability theory allows the forced response of the boundary layer on a flat plate
to a particular type of external disturbance field to be readily obtained (Mack, 1971, 1975). One of the
independent solutions of the stability equations in the freestream is, for αi = 0 and in the limit of large
Reynolds number, the inviscid flow over an oblique wavy wall of wavelength 2π/α moving with the velocity
c. The time-independent part of the pressure fluctuation given by this solution is [Eq. 9.11]

p = iγM1 (α− ω) e

(
iα
[
x∓(M2

1−1)
1/2

y
])

(11.1)

For a wave which is oblique to the freestream, α and M1 are taken in the direction normal to the constant
phase lines in the x,z plane. It is seen from Eq. 11.1 that when M1 > 1, the constant phase lines in the
x,y plane are Mach waves. With the negative sign in Eq. 11.1, the Mach waves are outgoing, i.e., energy
is transported in the direction of increasing y; with the positive sign, the Mach waves are incoming. When
M1 < 1, the solution with the upper sign decays exponentially upward, and the other solution increases
exponentially upward. In stability theory, only solutions which are at least bounded as y →∞ are permitted,
but no such restriction is present in the forcing theory where the incoming wave has been produced elsewhere
in the flow. The full viscous counterpart of Eq. 11.1 for an incoming wave has a slow exponential increase
upward, which is perfectly acceptable.

The incoming-wave solution bears some resemblance to a Fourier component of the sound field radiated
from turbulent boundary layers at high supersonic speeds according to the theory of Phillips (1960). In
this theory, each acoustic Fourier component α, β is produced by the same Fourier component of the frozen
turbulent field moving at a supersonic source velocity c relative to the freestream. Thus the turbulent
boundary layer is decomposed into oblique wavy walls moving supersonically, and the associated outgoing
Mach waves are the incoming Mach waves of the receiving laminar boundary layer at y = 0. However, in
Phillips’ theory, the field is random, and each “wavy wall” exists for only a finite time related to the lifetime
of an individual turbulent eddy. In the present theory, the incoming wave field is steady to an observer
moving with c.

A solution for the boundary-layer response at each Reynolds number can be found for each α, β and c
by using both inviscid solutions of the eighth-order system, Eqs. 8.11, together with the usual three viscous
solutions which go to zero as y →∞, to satisfy the boundary conditions as y = 0. The combined solution, in
addition to giving the boundary-layer response which results from the incoming acoustic wave, also provides
the amplitude and phase of the outgoing, or reflected, wave relative to the incoming wave. The combined,
or response, wave is neutral in the sense of stability theory, but its amplitude in the boundary layer is
a function of Reynolds number. If the local mass-flow fluctuation amplitude m(y) is chosen to represent
the amplitude (a hot-wire anemometer measures primarily m), the ratio of mp, the peak value of m(y), to
mi, the massflow fluctuation of the incoming wave, can be called A/A1, and used in a manner similar to
the amplitude ratio A/A0 of an instability wave. An increase in mp/mi with increasing R represents an
“amplification”; a decrease, a “damping”.
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The most important result of the forcing theory is shown in Fig. 11.1, where mp/mi from the viscous
theory is plotted against Reynolds number for waves of six dimensionless frequencies in an insulated-wall,
flat-plate boundary layer at M1 = 4.5. The waves are 2D, and the phase velocity has been assumed to be
c = 0.65. We see that the amplitude of each wave starts to grow at the leading edge, reaches a peak at
a Reynolds number that varies inversely with frequency, and then declines. The lower the frequency, the
higher the maximum value of mp/mi. This is the principal result of the forcing theory, and has been found
to be true for all boundary layers and all waves regardless of the wave angle and the phase velocity (provided
only that M1 > 1). As a consequence of this behavior, the forcing mechanism provides boundary-layer waves
with amplitudes from 6-14 times as large as freestream sound waves without any instability amplification.

In the inviscid theory, once c and ψ have been specified the only remaining parameter is α. When
the mass-flow fluctuation amplitude ratio is plotted against α for a 2D wave with c = 0.65 and the same
boundary layer as in Fig. 11.1, the inviscid theory gives a result that is significantly different from the viscous
theory. Since F = αc/R, a wave of given dimensionless frequency F travelling downstream at a constant c
will have its dimensionless wavenumber increase linearly with R. Consequently, the α axis is equivalent to
the R axis in Fig. 11.1. What we find from the inviscid theory is that inviscid waves decrease in amplitude
for α > 0.0075. All of the amplitude peaks in Fig. 11.1 occur at an α larger than this except for the
lowest frequency. Consequently, the initial growth of Fig. 11.1, which is just what is found in experiments
in supersonic and hypersonic wind tunnels with turbulent boundary layers on the tunnel walls, is purely a
viscous phenomenon. However, when the viscous response curves from Fig. 11.1 are also plotted against α,
they show that the decrease in amplitude which follows the region of growth in Fig. 11.1 is described closely
by the inviscid theory. This result is in contrast to stability theory, where the inviscid amplification and
damping rates are only approached by the viscous theory in the limit R → ∞. The higher the frequency,
the lower the Reynolds number at which the viscous curve joins the inviscid curve.

Figure 11.1: Peak mass-flow fluctuation as a function of Reynolds number for six frequencies. Viscous forcing
theory; M1 = 4.5, ψ = 0◦, c = 0.65, insulated wall.

11.2 Receptivity in high-speed wind tunnels

The quantity mp/mi, interpreted as A/A1, is the most important result in supersonic and hypersonic wind
tunnels. It provides an essential piece of information which has been missing up to now: the relation of
the amplitude of a boundary-layer wave to the amplitude of the freestream wave which causes it. In other
words, we now have a solution to one particular receptivity problem. Strictly speaking, mp is equivalent
to the A of stability theory only when the m distribution is self-similar, but such is not always the case.
However, this situation is no different from the usual comparisons of the quasi-parallel stability theory with
experiment, as in 7.5, where the peak m is followed downstream and identified with A even though the
amplitude distributions are nonsimilar.
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The major difficulty in using the forcing theory as a solution of the receptivity problem is that forced
waves are distinct from free waves, and the process by which the former become the latter is unknown.
An experiment by Kendall (1971) showed that, as measured by the phase velocity, a forced wave near the
leading edge evolves into a free instability wave farther downstream. In the paper from which a portion of
the text of this Section has been adapted (Mack, 1975), we assumed that the forcing theory applies up to
the neutral-stability point of the particular frequency under consideration, and that stability theory applies
downstream of that point. The conversion from one wave to the other would seem most likely to occur if the
amplitude distribution through the boundary layer at the neutral-stability point matched the eigenfunction
of the instability wave of the same frequency and wavelength. A limited number of calculations at M1 = 4.5
show that the two distributions are indeed close together for the same F , α, and R. With the only mismatch
between the two waves a phase-velocity difference of 20%, conversion of forced into free waves can be expected
to take place quickly.

Consequently, with the approach just outlined the forcing theory can be used to calculate A0/A1, the
ratio of the instability wave amplitude at the neutral point to the amplitude of the sound waves radiated
by the turbulent boundary layer on the wind-tunnel wall. The subsequent ratio of the instability-wave
amplitude to A1 is found by multiplying A0/A1 by the usual amplitude ratio A/A0 calculated from stability
theory. Thus, with the forcing theory we can replace the previously unknown constant A0 with a known
frequency-dependent A0.

11.3 Reflection of sound waves from a laminar boundary layer

A more straightforward use of the forcing theory is to calculate the reflection of a monochromatic sound
wave from a boundary layer. Figure 11.2 gives the ratio Ar, the amplitude of the reflected wave, to Ai, the
amplitude of the incoming wave, as a function of α for c = 0.65 and the same M1 = 4.5 boundary layer used
previously. Figure 11.3 gives the ratio of β(0), the pressure fluctuation at the wall, to βi(0), the pressure
fluctuation of the incoming wave at the position of the wall with no boundary layer present. In each figure
the upper curve is the inviscid result, and the other curves are the viscous results for a series of frequencies.

Figure 11.2: Ratio of amplitude of reflected wave to amplitude of incoming wave as function of wavenumber
from viscous and inviscid theories; M1 = 4.5, ψ = 0◦, c = 0.65, insulated wall. T ∗1 = 311K.

According to inviscid theory, when α = 0, Ar/Ai = 1.0 and β(0)/βi(0) = 2.0; when α→∞, Ar/Ai = 1.0
and β(0)/βi(0) = 0. Thus for α = 0, the boundary layer effectively has zero thickness and the sound wave
reflects as from a solid surface in the absence of a boundary layer. The reflected wave has the same amplitude
and phase at y = 0 as the incoming wave so that the wall pressure fluctuation is twice βi(0). A the other
limit, α → ∞, the boundary layer is infinitely thick compared to the wavelength, and the reflection is the
same as from a constant-pressure surface. The amplitude of the reflected wave is again equal to that of the
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Figure 11.3: Ratio of wall pressure fluctuation to pressure fluctuation of incoming wave; M1 = 4.5, ψ = 0◦,
c = 0.65, insulated wall. T ∗1 = 311K.

incoming wave, but its phase at y = 0 differs by 180◦ from the incoming wave. Thus the pressure fluctuation
at the wall is zero. Between these two limits, the amplitude of the reflected wave is always greater than the
amplitude of the incoming wave.

The viscous results are quite different. For small α, Ar is always less than Ai. Furthermore, a minimum
exists in Ar for each frequency. A similar minimum exists in β(0), but it is located at a larger α than is
the Ar minimum. If the Ar minimum were to reach zero, that particular α would constitute an instability
eigenvalue for the family of incoming waves. However, in stability theory, this type of wave has not been
encountered, either as a supersonic wave with c < 1−1/M1 as in the present example, or as a subsonic wave
with c > 1−1/M1 where the amplitude increases exponentially with increasing y. Figure 11.2 indicates that
if such an eigenvalue exists it would be at such a low Reynolds number to make the use of the quasi-parallel
theory invalid.

When the incoming Mach waves of the external travelling sound field reflect from a solid surface in the
absence of a boundary layer, there is no phase shift at the wall. Compression waves reflect as compression
waves, and the reflected waves originate at the points where the corresponding incoming waves intersect
the surface. However, when a boundary layer is present, there is a phase shift at the wall. Consequently,
a reflected Mach wave of the same phase appears to originate at a distance ∆ away from the point of
intersection. This offset distance, expressed as a ratio to the boundary-layer thickness, is given by

∆∗/δ =
c

FRyδ
[θi(0)− θr(0)] , (11.2)

where θi(0) is the phase (in radians) of the pressure fluctuation of the incoming wave at the wall, and θr(0)
is the same quantity for the reflected wave. When the phase of the reflected wave lags the phase of the
incoming wave, the reflected wave originates at a point downstream of the intersection with the incoming
wave. When the phase difference is an integer multiple of π, the incoming wave reflects as a wave of the
opposite sign at the point of intersection.

In Fig. 11.4, the ratio ∆∗/δ is given at R = 600 as a function of frequency for the same conditions as
in Figs. 11.2 and 11.3. At only one frequency, F = 0.975× 10−4, is the offset distance zero. For all smaller
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frequencies, the phase of the reflected wave lags behind the phase of the incoming wave, and ∆∗ is positive
with a maximum of 4.5δ at F = 0.08 × 10−4. Because of the long wavelength at this frequency, this offset
is only 0.077λ∗, or 28◦ in phase. Offsets have been observed experimentally in unpublished measurements
of Kendall. The measurements were made with a broad-band hot-wire signal, so no direct comparison with
the single-frequency calculations is possible.

Figure 11.4: Offset distance of reflected wave as function of frequency at R = 600; M1 = 4.5, ψ = 0◦, c =
0.65, insulated wall. T ∗1 = 311K.

11.4 Table of boundary-layer thicknesses

As a final item in Part B, we append Table 11.1 which gives the three common dimensionless boundary-layer
thicknesses as functions of the freestream Mach number for the family of insulated-wall, flat-plate boundary
layers for which numerical results have been given in Sections 9, 10, and 11. These quantities may be used to
convert the α, σ, and R (all based on L∗) into, say, αδ, σδ, and Rδ, based on δ. The conversion is achieved
by multiplying α, σ, and R by yδ.
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Table 11.1: Dimensionless boundary-layer thickness (U = 0.999), displacement thickness and momentum
thickness of insulated-wall, flat-plate boundary layers. (Wind-tunnel temperature conditions.)

M1 yδ y∗δ yθ
0 6.0 1.72 0.664

0.7 6.2 1.92 0.660
1.0 6.4 2.13 0.656
1.6 7.0 2.77 0.648
2.0 7.6 3.37 0.644
2.2 8.0 3.72 0.643
3.0 9.8 5.48 0.642
3.8 12.1 7.83 0.644
4.2 13.5 9.22 0.646
4.5 14.6 10.34 0.646
4.8 15.8 11.55 0.646
5.8 20.0 15.73 0.636
6.2 21.7 17.49 0.629
7.0 25.4 21.19 0.616
7.5 27.8 23.62 0.607
8.0 30.3 26.13 0.598
8.5 32.9 28.72 0.590
9.0 35.5 31.38 0.581
9.5 38.2 34.10 0.573
10.0 41.0 36.88 0.565
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Part III

Three-Dimensional Boundary Layers
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Chapter 12

Rotating Disk - A Prototype 3D
Boundary Layer

Up to this point we have been concerned in the numerical examples exclusively with two-dimensional bound-
ary layers, although the formulations of Chapters 2 and 8 are also valid for three-dimensional boundary
layers. In the final three chapters we shall take advantage of this fact to present a number of results for 3D
boundary layers. A fundamental difference between the stability of 3D and 2D boundary layers is that a 3D
boundary layer is subject to crossflow instability. This type of instability, which cannot occur in a 2D bound-
ary layer, is responsible for early transition on sweptback wings. Its essential features can best be introduced
by studying the simple boundary layer on a rotating disk. This self-similar boundary layer of constant
thickness was first used for this purpose by Gregory et al. (1955) in their classic paper on three-dimensional
boundary-layer instability.

12.1 Mean boundary layer

The exact solution of the Navier-Stokes equations for a rotating disk was given by von Kármán (1921), and
later and accurate numerical solution was worked out by Cochran (1934) and is given in Schlichting’s (1979)
book. We use the coordinate system r∗, θ, z∗, where r∗ is the radius, θ is the azimuth angle, and z∗ is in
the direction of the angular velocity vector ~Ω. The radial, azimuthal and axial velocity components can be
written

U∗(r∗, z∗) = Ω∗r∗U(ζ), V ∗(r∗, z∗) = Ω∗r∗V (ζ), W ∗(z∗) =
√

Ω∗ν∗W (ζ). (12.1)

The dimensionless velocity components U , V and W are functions only of the axial similarity variable

ζ =
z∗

L∗
, (12.2)

where

L∗ =

√
ν∗

Ω∗
(12.3)

is the length scale. In terms of the length scale and the velocity scale Ω∗r∗, the Reynolds number is

R =
Ω∗r∗L∗

ν∗
=
r∗

L∗
, (12.4)

which is simply the dimensionless radial coordinate r. The Reynolds number based on the local azimuthal
velocity and radius is

Re =
Ω∗r∗2

ν∗
=

(
r∗

L∗

)2

. (12.5)

Thus R =
√

Re, just as in the 2D boundary layers we have been studying. The displacement thickness of
the rotating-disk boundary layer is 1.271L∗.
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Figure 12.1: Rotating-disk boundary-layer velocity profiles.

The dimensionless azimuthal and radial velocity profiles in the coordinate system rotating with the disk
are shown in Fig. 12.1 The azimuthal, or circumferential, profile is of the same type as in a 2D boundary layer
with the velocity increasing monotonically from the surface to the outer flow, and it will be referred to as the
streamwise profile. With the disk rotating in the direction of positive θ (counterclockwise), the outer flow
relative to the disk is in the negative (clockwise) direction. The radial profile is of a type that cannot occur in
a 2D boundary layer. The velocity, directed outward from the disk center, is zero both at the wall and in the
outer flow, so that there is of necessity and inflection point, which is located at ζ = 1.812, where U = 0.133
and V = −0.760. The radial velocity, being normal to the streamwise flow, is by definition the crossflow
velocity. The maximum radial velocity of Umax = 0.181 is located at ζ = 0.934, where V = −0.496.u

12.2 Crossflow instability

The phenomenon of crossflow instability was discovered during early work on the flow over swept-back
wings. Transition in flight tests was observed by Gray (1952) to occur near the leading edge at abnormally
low Reynolds numbers compared to an unswept wing. Flow visualization revealed that the wing surface
before transition was covered with closely-spaced parallel streaks in the direction of the local potential flow,
as shown in Fig. IX.20 of the review article by Stuart (1963). The streaks were fixed to the wing, and, once
formed, did not change with time. They were conjectured to be the result stationary vortices in the boundary
layer. This same phenomenon was demonstrated by Gregory et al. (1955) to exist on a rotating disk. The
streaks were found by the china-clay technique to take on the form of logarithmic spirals at an angle of about
13◦ to 14◦ to the circumferential circumferential direction [see frontispiece of Rosenhead (1963)], with the
radius of the spiral decreasing with increasing angle θ. As in the wing experiment, the streak pattern was
fixed to the surface, and so could be photographed at the conclusion of the experiment with the disk at rest.

Stuart (Gregory et al., 1955) used an order-of-magnitude argument to reduce the exact linearized Navier-
Stokes equations for a rotating disk to the fourth-order Orr-Sommerfeld equation for the determination of
eigenvalues. In this case, as we have already discussed in Section 2.4.1, the 3D stability problem reduces to
a 2D stability problem for the velocity profile in the direction of the wavenumber vector. Since the velocity
profile in a 3D boundary layer, unlike a 2D boundary layer, depends on the direction, there is a different
stability problem to solve for each wave direction. The circumferential profile has only viscous instability,
and is much too stable to have anything to do with the observed instability phenomena. The radial velocity
profile, on the contrary, has inviscid instability because of the inflection point. As the inflection point is
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located well away from the disk surface, we can expect there to be a strong instability.
In addition to the inflectional radial profile, there is a whole family of profiles in directions close to the

radial which also have inflection points. Stuart noted that for the velocity profile at an angle of ε = 13.2◦,
where ε is measured from the radius in the positive θ direction, the inflection point is located where the
magnitude of the velocity is zero. Consequently, according to the Rayleigh theorem, which was shown to
still be valid for this type of profile, a stationary neutral normal mode (phase velocity c = 0) can exist with
a wave angle equal to ε. Stuart also showed by calculating streamlines in the plane of ζ and the wavenumber
vector for the rotating disk with large suction that the stationary inviscid disturbance consists of a system
of vortices close to the surface, all rotating in the same direction (clockwise, looking along the spiral towards
the disk center) and spaced one wavelength apart, and a second system of vortices farther from the surface.
Brown (1960) repeated this calculation for the rotating disk without suction using the viscous equations,
and confirmed the vortices near the surface, but not those farther out. The vortices near the surface were in
accord with conjectures made earlier. Thus the streaks and the spiral angle were explained as manifestations
of inflectional instability associated with the crossflow, and the whole phenomenon was named crossflow
instability.

This explanation, while very suggestive, left many questions unanswered. The azimuthal wavelength
calculated by Stuart for the inviscid neutral wave gave the result that there should be 113 vortices around
the circumference at R = 443, whereas in the experiments only about 30 were observed. This discrepancy
was attributed to the neglect of viscosity. Another reason for the discrepancy, not mentioned at the time, is
that the theory dealt with neutral waves, while the waves that form in the china clay were unstable spatial
waves, i.e., they were amplifying in the outward radial direction. Brown (1960) calculated a neutral-stability
curve from the Orr-Sommerfeld equation for the velocity profile in the direction 11.5◦ [said to be measured
from the photograph in Gregory et al. (1955)], and also determined the locus in α − R space of unstable
stationary temporal waves with this wave angle. According to Brown’s calculation, the number of vortices
at R = 433 is 23.6, and at R = 540 is 31.5. These numbers are more in accord with experiment, but no
explanation was given as to why these particular waves should be observed.

12.3 Instability characteristics of normal modes

The Orr-Sommerfeld calculations of Brown (1959, 1960, 1961) for various directional velocity profiles gave
a critical Reynolds number of about 180. In none of the experiments were waves detected at anything
approaching this low a Reynolds number. Malik and Orszag (1981) derived a new system of equations in
which all terms of order 1/r were retained. These equations are of sixth order for the determination of
eigenvalues, rather than fourth order. With the sixth-order equations, the critical Reynolds number was
computed to be 287 [later corrected to 275 by Malik (1983, private communication)]. This large difference
between the fourth and sixth-order equations casts serious doubt on the use of the former in the rotating
disk problem.

The stability analysis is carried out in the polar coordinates r, θ, ζ. The wavenumber vector ~k at an angle
ψ to the radial direction has components α in the radial direction and βθ in the azimuthal direction. The
wave angle ψ is measured from the radius and is positive counterclockwise as usual. In Fig 12.2, the spatial
amplification rate σ in the radial direction, computed as an eigenvalue with (βθ)i = 0 from the sixth-order
equations of Malik and Orszag (1981), is plotted against the azimuthal wavenumber βθ = 2π/λθ, where
λθ is the azimuthal wavelength in radians. This wavenumber expresses the number of wavelengths around
a circumference, which, in the present case, is equivalent to the number of vortices. It is related to the
wavenumber β based on L∗ by β = βθ/R. The critical Reynolds number is seen to be about R = 273, in
reasonable agreement with Malik’s most recent value. For R greater than about 400, the maximum spatial
amplification rate in Fig. 12.2 is larger than in any 2D Falkner-Skan boundary layer (for the separation
profile, σmax = 48 × 10−3). The group-velocity angle φr of the most unstable normal mode at R = 500 is
−83◦ (measured from the radial direction), so that the amplification rate in that direction, σg = σ cosφr, is
only 8.9× 10−3. The large values in the radial direction can be regarded as a consequence of the long spiral
path length rather than a reflection of the inherent instability of the velocity profile.

The wave angle ψ is given in Fig. 12.3 at several Reynolds numbers as a function of βθ. The interest
in this figure is the prominent maximum in ψ that increases with R. To understand this behavior it is
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Figure 12.2: Spatial amplification rate vs. azimuthal wavenumber at seven Reynolds numbers for zero-
frequency waves; sixth-order system.

Figure 12.3: Wave angle vs. azimuthal wavenumber at three Reynolds numbers for zero-frequency waves;
sixth-order system.

109



Figure 12.4: ln(A/A0) vs. azimuthal wavenumber at four Reynolds numbers for zero-frequency waves and
wave angle at peak amplitude ratio; sixth-order system.

necessary to mention that the normal-mode solution represented in Figs. 12.2 and 12.3 is not unique. There
is a second solution with larger wave angles that is completely damped for R ≤ 500. At R = 500, the
minimum wave angle of this solution is 18.3◦ at βθ = 23.5, and the minimum damping is 1.8 × 10−3 at
βθ = 22.2. At a Reynolds number somewhere above 500, the two solutions exchange identities for certain
βθ, with consequences that have not yet been worked out.

The logarithm of the amplitude ration A/A0 obtained by integrating σ along the radius is given in
Fig. 12.4 at R = 35, 400, 450 and 500. The reference amplitude A0 is at R = 250, rather than at the lower-
branch neutral point of each Fourier component. The wave angle at the maximum amplitude of each R is
noted in the figure. These numerical results differ from those of Malik and Orszag (1981) because here the
irrotationality condition, Eq. 2.55c, has been applied to the wavenumber vector of each Fourier component.
For the disk, this condition is that the azimuthal wavenumber βθ, or number of vortices, is constant. That
is, in Fig. 12.2 the path of integration is parallel to the ordinate. In Fig. 12.4, ln(A/A0) is given as a function
of both βθ and (βr)0, the value of β at the reference Reynolds number of 250. We observe that although
the bandwidth of βθ for which A is greater than A0 increases with increasing R, the bandwidth for which
A/A0 is within 1/e of the maximum amplitude ratio decreases slightly. The values of ln(A/A0) in this figure
contrast with the much higher values obtained by Cebeci and Stewartson (1980b) from the fourth-order
system and the parallel-flow saddle point criterion. Transition is usually observed to start at a Reynolds
number in the vicinity of 500, so that the N factors of Fig. 12.4 are of the magnitude customarily associated
with transition in 2D boundary layers. Thus we see that crossflow instability in the rotating-disk boundary
layer is powerful enough to lead to transition at lower-than-normal Reynolds numbers where the streamwise
profile is completely stable.

12.4 Wave pattern from a steady point source

The wave angles and number of vortices at the peak amplitudes of Fig. 12.4 are close enough to what is
observed in the experiments to suggest that the normal modes which yield those values are the dominant
modes of the stationary wave system that appears in the flow-visualization photographs. However, we are
still left without any explanation of how only the most-amplified mode could be present at each radius. The
filtering action of the boundary layer is not strong enough to accomplish this, and the constraints of constant
F and βθ do not allow any initial Fourier component to be the most-amplified normal mode at more than
one radius. Besides, the experiment of Gregory et al. (1955) showed clearly that a band of circumferential
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Figure 12.5: Ensemble-averaged normalized velocity fluctuations of zero-frequency waves at ζ = 1.87 on
rotating disk of radius rd = 22.9 cm. Roughness element at Rs = 249, θs = 173◦. [After Fig. 18 of
Wilkinson and Malik (1983)]

wavelengths is present at each radius, not just the most amplified.
A definite step forward was accomplished by the experiment of Wilkinson and Malik (1983). These

investigators used a hot-wire anemometer instead of flow visualization, and so could more accurately resolve
the disturbance structure on the disk. Although it had been conjectured by Gregory et al. (1955) that
minute roughness might play a role in fixing the vortex pattern with respect to the disk, the Wilkinson-
Malik experiment revealed for the first time that the wave pattern responsible for the stationary vortex
lines emanates from point sources randomly located on the disk. All of the observed properties of the
waves can thus be explained as characteristic features of the interference wave pattern that results from the
superposition of the entire azimuthal wavenumber spectrum of equal-phase zero-frequency normal modes
produced by the point-source roughness element. The streaks of flow-visualization photographs are the
constant-phase lines of the wave pattern. The wave patterns from a number of sources eventually merge and
cover the entire circumference of the disk. it is this merged wave pattern that appears in the flow visualization
experiments. The much greater sensitivity of the hot wire compared to flow visualization techniques made
it possible to detect waves at small radii where the merger was not yet complete.

Wilkinson and Malik (1983) made the phenomenon even clearer by placing an artificial roughness on the
disk. The waves from this roughness were of larger amplitude than the waves from the naturally occurring
minute roughnesses, and so offered and opportunity to study the essential phenomenon in a purer form.
Figure 12.5, taken from Fig. 18 of their paper, shows the steady wave pattern from the single roughness,
as well as others from unavoidable natural roughnesses. In this figure, which was obtained by forming
an ensemble average of the amplitude measurements at every disk revolution, the amplitudes have been
normalized to a constant value of the maximum amplitude at each radius.

The wave pattern of Fig. 12.5 is of the same type that we studied in Chapter 7 for a harmonic point source
in a Blasius boundary layer, with due allowance made for the very different instability characteristics of 2D
boundary layers and 3D boundary layers with crossflow instability. We therefore modified our calculation
procedure for planar boundary layers to fit the different geometry of the rotating disk and the lack of an axis
of symmetry, and have calculated the wave pattern produced by a zero-frequency point source located at
the Reynolds number of the roughness element in the Wilkinson-Malik experiment (Mack, 1985). The wave
forms, normalized to a constant value of the maximum amplitude as in Fig. 12.5, are shown in Fig. 12.6 along
with the constant phase lines. The numbering of the constant-phase lines corresponds to the system used
by Wilkinson and Malik. it is evident that the calculated wave pattern is in the closest possible agreement
with the measured wave pattern as to the location of the constant-phase lines, the number of oscillations
at each radius, and the azimuthal wavelength. The latter quantity varies with both the radius and azimuth
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Figure 12.6: Normalized wave forms and constant-phase lines of calculated wave pattern produced by zero-
frequency point source at Rs = 250 in rotating-disk boundary layer.

angle. The shift of hte wave pattern to the right in Figs. 12.5 and 12.6 with respect to the constant-phase
lines is because amplitude propagates essentially along group-velocity trajectories. The agreement between
Figs. 12.5 and 12.6 conclusively demonstrates that the observed stationary waves on a rotating disk are the
result of the superposition of the entire spectrum of normal modes, both amplified and damped.

The calculated amplitudes along the constant-phase lines are given in Fig. 12.7. Vortex No. 11 is the one
that comes from the point source, and it is the only one with an amplitude minimum, which, it should be
noted, is well beyond the critical Reynolds number of 273. The reference amplitude of this vortex was selected
to fit the minimum amplitude of the experiment, adn then used for all the other vortices. A comparison
is given in Fig. 12.8 of the calculated and experimental envelope amplitude distributions at R = 400 and
466. In this figure, the experimental amplitudes have been normalized to the arbitrary theoretical maximum
amplitude at R = 400. At R = 400, the agreement is excellent except at the right-hand edge of the wave
pattern, where a second wave pattern was present in the experiment. At R = 466, the influence of the
second wave pattern has spread almost to the center of the principal wave pattern, and is the reason for the
disagreement between theory and experiment in Fig. 12.8 to the right of the maximum amplitude.
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Figure 12.7: Calculated amplitudes along constant-phase lines of wave pattern behind zero-frequency point
source at Rs = 250 in rotating-disk boundary layer.

Figure 12.8: Comparison of calculated envelope amplitudes at R = 400 and 466 in wave pattern produced by
zero-frequency point source at Rs = 250 in rotating-disk boundary layer, and comparison with measurements
of Wilkinson and Malik (1983)(©, R = 397; �, R = 466).
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Chapter 13

Falker-Skan-Cooke Boundary Layers

13.1 Mean boundary layer

In order to more fully study the influence of three dimensionality in the mean flow on the boundary-layer
stability than is possible with the rotating disk, it is necessary to have a family of boundary layers where
the magnitude of the crossflow can be varied in a systemic manner. The two-parameter yawed-wedge
flows introduced by Cooke (1950) are suitable for this purpose. One parameter is the usual Falkner-Skan
dimensionless pressure-gradient parameter βh; the other is the ratio of the spanwise and chordwise velocities.
A combination of the two parameters makes it possible to simulate simple planar three-dimensional boundary
layers.

The inviscid velocity in the plane of the wedge and normal to the leading edge in the direction xc is

U∗c1 = c∗ (x∗c)
m
, (13.1)

where the wedge angle is (π/2)βh and βh = 2m/(m+ 1) as in Eq. 2.62. We shall refer to this velocity as the
chordwise velocity. The velocity parallel to the leading edge, or spanwise velocity, is

Ws1 = const. (13.2)

The subscript 1 refers to the local freestream. For this inviscid flow, the boundary-layer equations in the xc
direction, as shown by Cooke (1950), reduce to

f ′′′ + ff ′′ + βh

(
m+ 1

2
− f ′2

)
= 0. (13.3)

This equation is the usual Falkner-Skan equation for a two-dimensional boundary layer, and is indepen-
dent of the spanwise flow. The dependent variable f(y) is related to the dimensionless chordwise velocity
by

Uc =
U∗c
U∗c1

=

(
2

m+ 1

)
f ′(y), (13.4)

and the independent variable is the similarity variable

y = y∗

√
U∗c1
ν∗x∗c

. (13.5)

Once f(y) is known, the flow in the spanwise direction z∗s is obtained from

g′′ + fg′ = 0, (13.6)

where

Ws =
W ∗s
W ∗s1

= g(y). (13.7)
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Figure 13.1: Coordinate systems for Falkner-Skan-Cooke boundary layers.

Both f ′(y) and g(y) are zero at y = 0 and approach unity as y → ∞. Tabulated values of g(y) for a few
values of βh may be found in Rosenhead (1963, p. 470).

The final step is to use f ′(y) and g(y) to construct the streamwise and crossflow velocity components
needed for the stability equations. A flow geometry appropriate to a swept back wing is shown in Fig. 13.1.
There is no undisturbed freestream for a Falkner-Skan flow, but such a direction is assumed and a yaw, or
sweep, angle ψsw is defined with respected to it. the local freestream, or potential flow, is at an angle ψp
with respect to the undisturbed freestream. It is the potential flow that defines the x, z coordinates of the
stability equations. The angle of the potential flow with respect to the chord is

θ = tan−1

(
W ∗s1
U∗c1

)
, (13.8)

and θ is related to ψsw and ψp by
θ = ψsw + ψp. (13.9)

With local potential velocity, U∗1 =
√
U∗2c1 +W ∗2s1 , as the reference velocity, the dimensionless streamwise

and crossflow velocity components are

U(y) = f ′(y) cos2 θ + g(y) sin2 θ, (13.10a)

W (y) = [−f ′(y) + g(y)] cos θ sin θ. (13.10b)

These velocity profiles are defined by βh, which fixes f ′(y) and g(y), and the angle θ. We note from
Eq. 13.10b that for a given pressure gradient all crossflow profiles have the same shape; only the magnitude
of the crossflow velocity changes with the flow direction. In contrast, according to Eq. 13.10a streamwise
profiles change shape as θ varies. for θ = 0, U(y) = f ′(y); for θ = 90◦, U(y) = g(y); for θ = 45◦, the two
functions make an equal contribution.

When the Eq. 13.10 velocity profiles are used directly in the stability equations, the velocity and length
scales of the equations must be the same as in Eq. 13.10. This identifies the velocity scale as U∗1 , the length
scale as

L∗ =

√
ν∗x∗c
U∗c1

, (13.11)

and the Reynolds number U∗1L
∗/ν∗ as

R =
Rc

cos θ
. (13.12)
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Figure 13.2: Falkner-Skan-Cooke crossflow velocity profiles for βh = 1.0, 0.2, -0.1 and SEP (separation,
-0.1988377); INF, location of inflection point; MAX, location of maximum crossflow velocity.

where Rc = (U∗c1x
∗
c/ν
∗)1/2 is the square root of the Reynolds number along the chord. For positive pressure

gradients (m > 0), θ = 90◦ at xc = 0 and θ → 0 as x → ∞; for adverse pressure gradients (m < 0), θ = 0◦

at xc = 0 and θ → 90◦ as xc →∞. The Reynolds number Rc is zero at x = 0 for all pressure gradients, as
is R with one important exception. The exception is where m = 1 (βh = 1). For a 2D planar flow, βh = 1 is
the stagnation-point solution; here it is the attachment-line solution. In the vicinity of xc = 0, the chordwise
velocity is

U∗c1 = x∗c

(
dU∗c1
dx∗c

)
x=0

. (13.13)

The potential velocity along the attachment line is W ∗s1, and the Reynolds number is

Rx=0 =
W ∗s1

ν∗
(
dU∗c1
dx∗c

)
x=0

, (13.14)

a non-zero value.
For our purposes in this chapter, we may regard θ as a free parameter, and use the velocity profiles of

Eq. 13.10 at any Reynolds number. However, for the flow over a given wedge, θ can be set arbitrarily at
only one Reynolds number. if θref is θ at Rc = (Rc)ref, the θ at any other Rc is given by

tan θ = tan θref

[
(Rc)ref

Rc

] m
m+1

. (13.15)

For m � 1, the dependence on Rc is so weak that θ is constant almost everywhere. One way of choosing
(Rc)ref within the present context is to make it the chord Reynolds number where ψp = 0; i.e., the local
potential flow is in the direction of the undisturbed freestream. Then θref is equal to the yaw angle ψsw.

Figure 13.2 shows the crossflow velocity profiles for θ = 45◦ and four values of βh. The inflection point
and point of maximum crossflow velocity (Wmax) are also noted on the figure. In Fig. 13.3, Wmax for θ = 45◦

is given as a function of βh from near separation to βh = 1. The crossflow velocity for any other flow angle
is obtained by multiplying the Wmax of the figure by cos θ sin θ. The maximum crossflow velocity of 0.133
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Figure 13.3: Effect of pressure gradient on maximum crossflow velocity; Falkner-Skan-Cooke boundary layers.

is generated by the separation profile rather than by the stagnation profile, where Wmax = 0.120. However,
Wmax varies rapidly with βh in the neighborhood of separation, as do all other boundary-layer parameters,
and for βh = −0.190, Wmax is only 0.102.

The function g(y) is only weakly dependent on βh, and, unlike f ′(y), never has an inflection point even
for an adverse pressure gradient. Indeed it remains close to the Blasius profile in shape, as underlined by a
shape factor H (ratio of displacement to momentum thickness) that only changes from 2.703 to 2.539 as βh
goes from -0.1988377 (separation) to 1.0 (stagnation). The weak dependence of g(y) on βh has been made
the basis of an approximate method for calculating boundary layers on yawed cylinders. For our purposes,
it allows some of the results of the stability calculations to be anticipated. For waves with the wavenumber
vector aligned with the local potential flow, we can expect the amplification rate to vary smoothly form its
value for a two-dimensional Falkner-Skan flow to a value not too far from Blasius as θ goes from zero to 90◦.

The stability results will be presented in terms of the Reynolds number R and the similarity length
scale L∗. In order that the results may be converted to the length scales of hte boundary-layer thickness,
displacement thickness or momentum thickness, Table 13.1 lists the dimensionless quantities yδ = δ/L∗,
yδ∗ = δ∗/L∗ and the shape factor H of the streamwise profile for several combinations of βh and θ. Also
listed are Wmax, the average crossflow velocity W = (

∫
W dy)/y; yinf, the y of the inflection point of the

crossflow velocity profile; and εinf, the deflection angle of the streamline at y = yinf. The quantity yδ is
defined as the point where U = 0.999.

13.2 Boundary layers with small crossflow

In a two-dimensional boundary layer, the most unstable wave is two dimensional. Therefore, we can ex-
pect that in three-dimensional boundary layers with small crossflow, the most unstable wave will have its
wavenumber vector nearly aligned with the local potential flow, and we can restrict ourselves to waves with
ψ = 0◦ forthe purpose of determining the maximum amplification rate. This procedure is equivalent to
studying the two-dimensional instability of the streamwise profile provided that ψ = 0 (amplification rate in
streamwise direction). In the calculations of this chapter, ψ was taken to be either zero or φg. In the latter
case, σg is almost identical to σ, which we define as the amplification rate with ψ = 0, and we shall ignore
the difference.

The effect of the flow angle θ on the maximum spatial amplification rate of the waves with ψ = 0◦ is
shown in Fig. 13.4 for βh = ±0.02 and two Reynolds numbers. The amplification rate σmax is expressed as
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Table 13.1: Properties of three-dimensional Falkner-Skan-Cooke boundary layers.

βh θ yδ yδ∗ H Wmax W εinf yinf

SEP 2.2 8.238 3.495 4.024 0.0102 0.00476 0.487 4.306
5.0 8.236 3.489 4.010 0.0231 0.01077 1.100
10.0 8.229 3.466 3.959 0.0455 0.02123 2.156
40.0 8.095 3.075 3.280 0.1310 0.06214 5.709
50.0 8.017 2.897 3.064 0.1310 0.06274 5.516

-0.10 45.0 6.522 1.985 2.698 0.0349 0.01619 1.498 3.213
-0.02 45.0 6.098 1.763 2.609 0.0058 0.00267 0.249 2.940
0.02 45.0 5.931 1.682 2.578 -0.0054 -0.00248 -0.232 2.835
0.04 45.0 5.348 1.646 2.564 -0.0104 -0.00480 -0.449 2.787
0.10 45.0 5.646 1.551 2.529 -0.0239 -0.01094 -1.029 2.659

0.20 45.0 5.348 1.424 2.482 -0.0423 -0.01924 -1.823 2.478
1.0 2.4 3.143 0.6496 2.227 -0.0100 -0.00503 -0.406 1.524

10.0 3.196 0.6603 2.226 -0.0410 -0.02021 -1.669
40.0 3.574 0.8050 2.275 -0.1181 -0.05204 -5.129
45.0 3.621 0.8378 2.301 -0.1191 -0.05217 -5.291
50.0 3.661 0.8706 2.332 -0.1181 -0.05081 -5.295
55.0 3.695 0.9024 2.366 -0.1127 -0.04804 -5.135
80.0 3.791 1.0153 2.524 -0.0410 -0.01704 -1.987
87.6 3.799 1.0260 2.542 -0.0100 -0.00416 -0.489

Figure 13.4: Effect of flow angle on maximum amplification rate with respect to frequency of ψ = 0◦ waves
at R = 1000 and 2000 in Falkner-Skan-Cooke boundary layers with βh = ±0.02.
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Figure 13.5: Effect of pressure gradient on minimum critical Reynolds number: —–, zero-frequency crossflow
instability waves in Falkner-Skan-Cooke boundary layers with θ = 45◦; - - -, 2D Falkner-Skan boundary layers
[from Wazzan et al. (1968a)].

a ratio to the Balsius value (σb)max. It will be recalled that with βh = 0, g(y) = f ′(y), and the velocity
profile remains the Blasius function for all flow angles. The effect of a non-zero flow angle with βh 6= 0 is
destabilizing for a favorable pressure gradient, and stabilizing for an adverse pressure gradient. Consequently,
it reduces the pressure-gradient effect of 2D Falkner-Skan boundary layers. The reason for this result is easy
to understand by reference to Eq. 13.10. We have already pointed out in Section 13.1 that the spanwise
velocity profile g(y) is always close to the Blasius function. Thus as the flow angle increases from zero, the
amplification rate must change from the two-dimensional Falkner-Skan value at θ = 0◦ to a value not far
from Blasius at θ = 90◦.

As discussed previously, the only physically meaningful flow with θ = 90◦ and a non-zero Reynolds
number is the attachment-line flow (βh = 1). For all other values of βh, R at this flow angle must be either
zero (βh > 0) or infinite (βh < 0). With βh = 1.0 and R = 1000 (Rθ = 404.2, where Rθ is the momentum-
thickness Reynolds number), σmax/(σb)max = 0.766. The minimum critical Reynolds number of this profile
is (Rθ)cr = 268 (the parallel-flow Blasius value is 201), yet turbulent bursts have been observed as low as
Rθ = 250 for small disturbances by Poll (1977).

We must still show that the waves with ψ = 0◦ properly represent the maximum instability of three-
dimensional profiles with small crossflow. For this purpose a calculation was made of σ as a function of ψ
for βh = −0.02, θ = 45◦, R = 1000 and F = 0.4256× 10−4, the most unstable frequency for ψ = 0◦ at this
Reynolds number. It was found that the crossflow indeed introduces an asymmetry into the distribution of
σ with ψ, and the maximum of σ is located at ψ = −6.2◦ rather than at 0◦. However, this maximum value
differs from the σmax of Fig. 13.4 by only 0.7%.

13.3 Boundary layers with crossflow instability only

The main advantage that the Falkner-Skan-Cooke boundary layers offer over the rotating disk boundary layer
for studying crossflow instability is that the maximum crossflow velocity is not constant, but is a function of
βh and θ. The crossflow velocity is a maximum at θ = 45◦ for a given βh, and we can expect the crossflow
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Figure 13.6: Effect of flow angle on minimum critical Reynolds number of zero-frequency crossflow waves for
βh = 1.0 and -0.1988377 Falkner-Skan-Cooke boundary layers.

instability to also be a maximum near this angle. Figure 13.5 shows the minimum critical Reynolds number
Rcr at θ = 45◦ for the zero-frequency crossflow disturbances as a function of βh. For comparison, Rcr for
Tollmien-Schlichting waves in 2-D Falkner-Skan crossflow boundary layers, as computed by Wazzan et al.
(1968a), is also given. For adverse pressure gadients, the steady crossflow disturbances become unstable
at Reynolds numbers well above the Rcr for the 2D profiles. On the contrary, for βh > 0.07 the reverse
is true, and for most pressure gradients in this range the steady disturbances become unstable at much
lower Reynolds numbers than the 2D Rcr (for βh = 1.0, the 2D Rcr is 19,280 compared to Rcr = 212 for
zero-frequency crossflow instability).

The distribution of Rcr with θ is shown in Fig. 13.6 for βh = 1.0 over the complete range of θ, and for
the separation profiles (βh = −0.1988377) over the range 0◦ < θ < 50◦. Near θ = 0◦ and 90◦, Rcr is very
sensitive to θ; near, but not precisely at, θ = 45◦ Rcr has a minimum. This minimum occurs close to the
maximum of the streamline deflection angle at y = yinf, εinf (see Table 13.1), which, unlike Wmax, is not
symmetrical about θ = 45◦. Table 13.2 lists the critical wave parameters for a few combinations of βh and
θ. The extensive computations needed to fix these parameters precisely were not carried out in most cases,
and so the values in the table are not exact. It can be noted that the relation

ψ =

(
βh
|βh|

)
(90− |ε|inf (13.16)

gives ψcr to within a degree for the separation profiles, and to within 0.1◦ for the other profiles of Tables 13.1
and 13.2. This result holds in general for the most unstable wave angle.

As an example of a boundary layer which is unstable at low Reynolds number only as a result of crossflow
instability, we select βh = 1.0 and θ = 45◦, and present results for the complete range of unstable frequencies.
Although this pressure gradient can only occur at an attachment line, Fig. 13.5 leads us to expect that all
profiles with a strong favorable pressure gradient will have similar results. For this type of profile, the
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Table 13.2: Wave parameters at minimum critical Reynolds number of zero-frequency disturbances.

βh θ Rcr kcr ψcr

SEP 2.2 535 0.213 -89.41
5.0 237 0.213 -88.68
10.0 121 0.215 -87.44
40.0 46.5 0.230 -83.54
45.0 46.7 0.230 -83.57
50.0 48.4 0.231 -83.81

-0.10 45.0 276 0.295 -88.42
-0.02 45.0 1885 0.310 -89.74
0.02 45.0 2133 0.322 89.76
0.04 45.0 1129 0.327 89.53
0.10 45.0 527 0.339 88.93
0.20 45.0 328 0.358 88.12
1.00 2.4 2755 0.553 89.60

10.0 671 0.547 88.33
40.0 219 0.545 84.88
45.0 212 0.540 84.70
50.0 212 0.540 84.70
55.0 218 0.538 84.85
80.0 563 0.532 88.00
87.6 2325 0.532 89.51

Figure 13.7: Instability characteristics of βh = 1.0, θ = 45◦ Falkner-Skan-Cooke boundary layers at R = 400:
(a) maximum amplification rate with respect to wavenumber, and unstable ψ−F region; (b) unstable k−F
region.
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Figure 13.8: Effect of wave angle on amplification rate, wavenumber, and group-velocity angle for F =
2.2× 10−4 at R = 276; βh = −0.10, θ = 45◦ Falkner-Skan-Cooke boundary layer.

minimum critical Reynolds number of the least stable frequency is very close to the Rcr of Fig. 13.5. We
therefore choose R = 400, which is well above Rcr and where the instability is fully developed, and present
a summary of the instability characteristics in Fig. 13.7.

Figure 13.7a gives σmax as a function of the dimensionless frequency F , and also shows the portion of the
ψ−F plane for which there is instability. The unstable region is enclosed between the curves marked ψU and
ψL. These curves represent either neutral stability points or extrema of ψ. The corresponding wavenumber
magnitudes are shown in Fig. 13.7b. The negative frequencies signify that with ψ taken to be continuous
through F = 0, the phase velocity changes sign. If we choose ψ so that the wavenumber and phase velocity
are both positive, then it is ψ that changes sign at F = 0. Consequently, there are two groups of positive
unstable frequencies with quite different wave angles. The first group, which includes the peak amplification
rate, is oriented anywhere from 5◦ to 31◦ (clockwise) from the direction opposite to the crossflow direction.
The second group is oriented close to the crossflow direction itself.

13.4 Boundary layers with both crossflow and streamwise insta-
bility

As an example of a boundary layer which has both crossflow and streamwise instability at low Reynolds
numbers, we select βh = −0.10 and θ = 45◦. In contrast to the previous case, the steady disturbances
do not become unstable until a Reynolds number, R = 276, where the peak amplification rate is already
7.35 × 10−3. [For βh = −0.10 and θ = 0◦, σmax = 11.0 × 10−3 at F = 2.2 × 10−4, according to Wazzan et
al. (1968a)]. The distribution of σ with ψ is shown in Fig. 13.8 for F = 2.2× 10−4, a frequency close to the
most unstable frequency of F = 2.1 × 10−4. We see that with a maximum crossflow velocity of 0.0349 (cf.
Table 13.1), the distribution of σ about ψ = 0◦ is markedly asymmetric, and the maximum amplification
rate of 7.31× 10−3 is located at ψ = −29.4◦ rather than near zero. This asymmetry was barely perceptible
for the small crossflow boundary layers of Fig. 13.4, where the crossflow is only one sixth as large. The σ
at ψ = 0◦ of Fig. 13.8 (5.82 × 10−3) is close to σmax with respect to the frequency of the ψ = 0◦ waves
(5.91 × 10−3). Since this value is 20% below the peak amplification rate, the ψ = 0◦ waves are no longer
adequate to represent the maximum instability as with small crossflow boundary layers. Fig. 13.8 also gives
the distribution with ψ of k and the real group-velocity angle, φr. The latter quantity remains within ±7.5◦

of the potential-flow direction throughout the unstable region.
Because R = 276 is the minimum critical Reynolds number of the steady disturbances, the unstable

region terminates in a neutral stability point at F = 0. We are particularly interested here in Reynolds
numbers where F = 0 is also unstable, and as an example, Fig. 13.9 gives results for all unstable frequencies
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Figure 13.9: Instability characteristics of βh = −0.10, θ = 45◦ Falkner-Skan-Cooke boundary layer at
R = 555: (a) maximum amplification rate with respect to wavenumber, and unstable k − F region; (b)
unstable ψ − F region.
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at R = 555. Figure 13.9a shows σmax as a function of F (here, as in Fig. 13.7, σmax is the maximum with
respect to k), as well as the unstable region of the k − F plane; the unstable region of the ψ − F plane
appears in Fig. 13.9b. These two unstable regions are quite different from those of Fig. 13.7 where there is
only crossflow instability. The negative frequencies do resemble those of Fig. 13.7 in that the unstable range
of ψ is small, the unstable range of k is large, and with ψ redefined so that F > 0, the orientations are close to
the crossflow direction. However, for the higher frequencies, which are by far the most unstable, the unstable
regions of Fig. 13.9 bear more of a resemblance to those of a 2D boundary layer than to Fig. 13.7. The main
differences from the 2D case are the asymmetry about ψ = 0◦ already noted in Fig. 13.8, the one-sidedness
of ψmax, and, for F < 0.4× 10−4, the replacement of a lower cutoff frequency for instability by a rapid shift
with decreasing frequency to waves oriented opposite to the crossflow direction and which are unstable down
to zero frequency. The instability shown in Fig. 13.9 represents primarily an evolution of the small crossflow
boundary layers of Fig. 13.4 to larger crossflow. Only the lower frequencies, say F < 0.2× 10−4, have to do
with the pure crossflow instability of Fig. 13.7. For frequencies near 0.4× 10−4, ψ varies little with k in one
part of the unstable region, as with crossflow instability; in the other part, as with streamwise instability,
the opposite is true. This behavior becomes more pronounced at high Reynolds numbers.
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Chapter 14

Transonic Infinite-Span Swept-Wing
Boundary Layer

The 3D boundary layers that have received the most attention in aeronautical practices are those on transonic
swept wings. The desirability of maintaining laminar flow on the wings of large transonic aircraft has led to
the study of the instability of such boundary layers as a means of estimating the occurrence of transition and
the effectiveness of various methods of laminar-flow control. The basic phenomenon of crossflow instability
was encountered and its origin explained by the early investigators, as we have learned in Chapter 12, and
means of coping with its adverse consequences were developed. However, interest in laminar-flow control
was waning by the time computer-aided stability analysis became commonplace in the 1960’s, and nothing
more was done on the subject of 3D boundary-layer stability following Brown’s work (1959; 1960; 1961)
until the energy crisis of the mid-1970’s. In response to the sudden need for an analysis tool, Srokowski and
Orszag (1977) brought out the SALLY code. In spite of using the incompressible stability theory and a non-
physical method of computing wave amplitude, this code has been widely used. It has since been superseded
by COSAL, a compressible version of SALLY (Malik, 1982). Work that was directed at developing more
fundamental methods of stability analysis for swept wing boundary layers was carried out by Cebeci and
Stewartson (1980a,b), Lekoudis (1979, 1980), Mack (1979a, 1981), and Nayfeh (1980a,b).

Attention has so far been restricted to infinite-span swept wings. Even with this simplification, the
nonsimilarity of the boundary layers has made it necessary to proceed on the basis of specific examples,
and to try and glean a general understanding of the instability of this type of boundary layer on the basis
of extensive numerical calculations. We shall follow this same practice in this chapter. Detailed numerical
results for a single example that were obtained by an application of methods already presented in this
document (Mack, 1979a) are given in the hope that a careful study will yield some understanding of the
instabilities that arise and the procedures to follow in analyzing them.

14.1 Mean boundary layer

The flow example used in this chapter is the boundary layer on a 35◦ swept wing of infinite span with a
supercritical airfoil section, distributed suction and a chord of c∗ = 2.0 m (6.55 ft) normal to the leading
edge. The undisturbed flow conditions are M∞ = 0.89117, T ∗∞ = 311 K, and p∗∞ = 0.30663 atm. The upper
surface pressure coefficient Cp is listed in Table 14.1 together with other properties of the potential flow as
functions of s∗/c∗, where s∗ is the arc length along the airfoil section. The coordinate system is shown in
Fig. 14.1. The Reynolds number used in the stability calculations is R = U∗1L

∗/ν∗1 , where U∗1 is the potential
velocity. The length scale L∗ =

√
ν∗1s
∗/U∗c1 reduces to the usual boundary-layer length scale when the flow

is two-dimensional, and is non-zero at the attachment line. The Reynolds number Res is U∗1 s
∗/ν∗1 . The

velocity derivative which defines m and thus the Hartree βh was evaluated by the numerical differentiation
of Uc1 as calculated from the pressure coefficient. The very large −βh near the trailing edge have been
omitted from the table.

Table 14.2 lists some properties of the boundary-layer solution calculated for the potential flow of Ta-
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Figure 14.1: Coordinate systems used for infinite-span swept wing.
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ble 14.1 and the suction distribution CQ(s∗) given in the last column. For comparison, the profile parameters
of an insulated flat-plate boundary layer with no suction at M1 = 1.2 are yδ = 5.85, yδ∗ = 2.31 and H = 3.54.
The maximum crossflow is Wmax = −0.115, and it occurs at station N = 4 (s∗/c∗ = 0.0059). This value
is virtually identical to the maximum possible crossflow generated by the Falkner-Skan-Cooke profiles of
Chapter 13, where Wmax = −0.119 for βh = 1.0 and ψsw + ψp = 45◦. Although the pressure gradient first
becomes adverse at N = 14, Wmax does not change sign until N = 21. For N = 15 to 26 (S∗/c∗ = 0.128 to
0.625), there are two inflection points in the crossflow velocity profile. Up to N = 20 (s∗/c∗ = 0.364), W
has the same sign at both inflection points; for N > 20, W has opposite signs. There is a reverse crossflow
from N = 17 to 27 (s∗/c∗ = 0.211 to 0.661). The angle εi is the angle of the velocity vector at the y of the
inflection point of the crossflow velocity profile. When there are two inflection points, the listed εi is for the
outer point when Wmax < 0, and for the inner point when Wmax > 0.

Table 14.1: Properties of potential flow

N s∗/c∗ M1 Cp βh ψ (deg) Res × 10−6 R L∗ × 10 (cm)

1 0 0.4859 0.7652 1.0000 55.00 0 221 0.0560
2 0.0011 0.4934 0.7527 0.9770 45.23 0.009 224 0.0560
3 0.0033 0.5424 0.6680 0.9306 29.26 0.028 225 0.0593
4 0.0059 0.6261 0.5151 0.8753 16.96 0.056 301 0.0632
5 0.0087 0.7186 0.3375 0.7798 8.95 0.091 355 0.0682
6 0.0120 0.8033 0.1715 0.6721 3.91 0.132 412 0.0747
7 0.0157 0.8806 0.2051 0.6000 0.42 0.180 470 0.0818
8 0.0199 0.9487 -0.1104 0.5300 -2.06 0.235 529 0.0896
9 0.0246 1.0084 -0.2225 0.4759 -3.90 0.296 588 0.0978
10 0.0299 1.0623 -0.3206 0.4351 -5.34 0.363 647 0.1064
11 0.0358 1.1095 -0.4041 0.3900 -6.46 0.437 705 0.1153
12 0.0492 1.1863 -0.5338 0.2975 -8.06 0.604 823 0.1339
13 0.0651 1.2306 -0.6050 0.1583 -8.87 0.800 944 0.1535
14 0.0938 1.2462 -0.6295 -0.0137 -9.14 1.152 1131 0.1841
15 0.1281 1.2402 -0.6201 -0.0594 -9.03 1.573 1323 0.2152
16 0.1675 1.2316 -0.6066 -0.0558 -8.87 2.056 1513 0.2462
17 0.2113 1.2236 -0.5943 -0.0518 -8.75 2.595 1701 0.2767
18 0.2591 1.2180 -0.5850 -0.0449 -8.64 3.182 1884 0.3065
19 0.3101 1.2126 -0.5765 -0.0515 -8.55 3.809 2063 0.3354
20 0.3636 1.2071 -0.5676 -0.0721 -8.45 4.467 2235 0.3634
21 0.4190 1.1990 -0.5544 -0.1315 -8.30 5.146 2400 0.3903
22 0.4754 1.1864 -0.5339 -0.2205 -8.06 5.836 2559 0.4162
23 0.5132 1.1762 -0.5172 -0.2203 -7.86 6.300 2661 0.4329
24 0.5508 1.1704 -0.5076 -0.1231 -7.75 6.761 2758 0.4488
25 0.5882 1.1663 -0.5008 -0.1882 -7.67 7.218 2850 0.4640
26 0.6250 1.1558 -0.4831 -0.4625 -7.45 7.666 2940 0.4788
27 0.6610 1.1419 -0.4596 -0.6677 -7.17 8.101 3027 0.4933
28 0.6962 1.1257 -0.4320 -0.9785 -6.82 8.521 3109 0.5074
29 0.7302 1.1058 -0.3976 -1.6025 -6.38 8.919 3188 0.5213
30 0.7631 1.0826 -0.3568 -2.8420 -5.84 9.293 3262 0.5351
31 0.7946 1.0553 -0.3080 - -5.16 9.634 3333 0.5490
32 0.8246 1.0225 -0.2483 - -4.29 9.933 3399 0.5636
33 0.8532 0.9820 -0.1732 - -3.12 10.172 3461 0.5799
34 0.8803 0.9366 -0.0874 - -1.65 10.345 3519 0.5982
35 0.9059 0.8960 -0.0094 - -0.18 10.479 3573 0.6169
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Table 14.2: Properties of mean boundary layer

N yδ yδ∗ H R Wmax εi (deg) CQ × 103

1 3.847 1.0800 2.693 239 0 0 0
2 3.843 1.0428 2.603 234 -0.0408 -1.977 0
3 3.891 1.0157 2.538 259 -0.0936 -4.362 0
4 3.950 0.9914 2.506 299 -0.1146 -5.142 0
5 3.980 0.9511 2.480 338 -0.1116 -4.857 0.735
6 4.017 0.9372 2.513 386 -0.0984 -4.198 0.700
7 4.115 0.9819 2.614 462 -0.0866 -3.654 0.630
8 4.218 1.0274 2.689 544 -0.0783 -3.283 0.530
9 4.344 1.0921 2.787 642 -0.0717 -3.004 0.430
10 4.475 1.1590 2.870 749 -0.0669 -2.795 0.290
11 4.632 1.2468 2.974 879 -0.0633 -2.632 0.163
12 4.900 1.3860 3.106 1141 -0.0568 -2.341 0.155
13 5.141 1.5201 3.229 1435 -0.0485 -1.963 0.143
14 5.442 1.7004 3.352 1924 -0.0337 -1.317 0.143
15 5.635 1.8110 3.398 2395 -0.0215 -0.840 0.143
16 5.709 1.8341 3.371 2776 -0.0111 -0.520 0.143
17 5.732 1.8292 3.345 3112 -0.0094 -0.349 0.143
18 5.721 1.8030 3.306 3397 -0.0065 -0.242 0.143
19 5.706 1.7815 3.287 3675 -0.0046 -0.170 0.143
20 5.685 1.7603 3.265 3934 -0.0031 -0.117 0.143
21 5.685 1.7608 3.270 4226 0.0059 0.273 0.143
22 5.701 1.7754 3.279 4653 0.0113 0.637 0.143
23 5.708 1.7825 3.280 4743 0.0148 0.851 0.143
24 5.623 1.7076 3.184 4709 0.0155 0.853 0.214
25 5.494 1.6023 3.079 4567 0.0155 0.816 0.288
26 5.369 1.5099 2.997 4440 0.0191 1.011 0.370
27 5.217 1.4001 2.894 4238 0.0251 1.478 0.490
28 5.028 1.2685 2.770 3944 0.0309 1.873 0.610
29 4.827 1.1350 2.650 3618 0.0369 2.241 0.755
30 4.608 0.9964 2.523 3250 0.0432 2.601 0.930
31 4.392 0.8694 2.409 2898 0.0498 2.975 1.090
32 4.205 0.7671 2.317 2608 0.0579 3.441 1.215
33 4.062 0.6933 2.245 2399 0.0690 4.100 1.300
34 3.952 0.6344 2.172 2233 0.0816 4.854 1.380
35 3.853 0.5780 2.097 2065 0.0912 5.330 1.450
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Figure 14.2: Amplification rate, wave angle, and group-velocity angle as functions of wavenumber at N = 4
(R = 301) for F = 0: − · −, incompressible theory; —,sixth-order compressible theory; 35◦ swept wing.

14.2 Crossflow instability

Surprisingly little crossflow is required for crossflow instability to occur. For example, it was found with the
similar boundary layers of Chapter 13 that for βh = ±0.02 and ψsw + ψp = 45◦ (the angle that generates
the maximum crossflow for a given pressure gradient), the critical Reynolds number of crossflow instability
for both boundary layers is close to 1100 even though Wmax is only about 0.6%.

Figure 14.2 gives gives a comparison of the distribution of the amplification rate σg with the magnitude of

the wavenumber vector ~k as computed at N = 4 from both the incompressible and sixth-order compressible
stability theories. It is evident that the incompressible theory gives reasonably good results, with σmax =
7.30 × 10−3 compared to 6.59 × 10−3 from the compressible theory, a difference of 10.8%. The eigth-order
compressible equations give σmax = 6.51 × 10−3, a difference of only 1.2% from the sixth-order system.
Consequently, there is little reason to use the eighth-order system, and for a general study of crossflow
instability near the leading edge the incompressible theory is adequate.

The angle ψ of the wavenumber vector as computed from the incompressible theory is also shown in
Fig. 14.2. Almost identical results are given by the compressible theory. The narrow bandwidth of unstable
ψ and wide bandwidth of unstable k is characteristic of crossflow instability. The sharpness of the angular
“tuning” increases as the crossflow decreases. For example, atN = 17 whereWmax = −0.0094, the bandwidth
of unstable k is about the same as in Fig. 14.2, but the bandwidth of unstable ψ is only 0.15◦.

It is of interest to note that the angle ψ = 84.8◦ at the maximum amplification rate is almost identical to
the angle 90− |εi| (= 84.9◦), where εi is the angle defined in Section 14.1 and listed in Table 14.2. The near
equality of these two angles has been found to be true in general for crossflow instability as 90− |εi| is given
the sign of Wmax. When there are two inflection points and W has the same sign at each (15 ≤ N ≤ 20), it is
the outer point, where DW is a maximum, that is significant for instability. When W has opposite signs at
the two inflection points (21 ≤ N ≤ 26), it is the inner point, where DW is a minimum, that is significant.
The above convenient relation between ψ and εi makes it easy to compute an initial eigenvalue for crossflow
instability.
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Figure 14.3: Unstable frequency range at N = 4 (R = 301) for k = 0.520: − · −, incompressible theory; —,
sixth-order compressible theory; 35◦ swept wing.

The real and imaginary parts of φ are also shown in Fig. 14.2. The real part, φr, has the same sign as
Wmax, and φr at kmax, the wavenumber for maximum amplification rate, is proportional to Wmax. At kmax,
ψ − φr = 88.6◦. Further back on the wing, this difference approaches 90◦ as the crossflow diminishes. The
imaginary part of φ, φi, reverses sign at the point of maximum amplification rate, a behavior that is true at
all stations.

Although crossflow instability has been defined as the existence of unstable steady disturbances, a whole
band of frequencies becomes unstable at about the same critical Reynolds number. Figure 14.3 gives σ as
a function of F at N = 4 as calculated from both the incompressible and sixth-order compressible theories
for k = 0.520, and the kmax of F = 0. It is apparent that the effect of compressibility is about the same for
all frequencies as for F = 0. The values of σmax × 103 for k = 0.520 are: incompressible, 8.91; sixth-order
compressible, 8.00; eighth-order compressible, 7.90.

There are both positive and negative unstable frequencies in Fig. 14.3. The negative frequencies simply
mean that with the direction of ~k defined by the values of ψ shown in the figure, the phase velocity is
negative. If, instead, the direction of ~k had been defined in the usual manner to be the direction of the
phase velocity, there would be two groups of positive unstable frequencies. For the positive frequencies of
Fig. 14.3, ~k is within 25◦ of the direction opposite to the crossflow; for the negative frequencies, ~k is within
5◦ of the direction of the crossflow. The sign convention of Fig. 14.3 has been adopted so that the maximum
instability will always be associated with a positive frequency, and this nonstandard definition of ~k is used
here, as in Section 13.3, to make it easier to plot the numerical results.

There is a wide band of unstable frequencies in Fig. 14.3. The dimensional frequency corresponding
to F = 2.0 × 104 is 57.8 kHz, and the most unstable frequency is about 17 kHz. The unstable bandwidth
becomes much narrower further downstream as both the crossflow and maximum amplificatoin rate decrease.
It was found in Mack (1979b) that for a boundary layer with crossflow instability only, kmax does not vary
much with frequency for F > 0. For F < 0, kmax does change with frequency. It is estimated from Chap. 13
that the unstable region of negative frequencies at N = 4 extends to F = −1.5 × 10−4 with ψ = 92◦, and
that the maximum amplification rate of the wave with ~k in the crossflow direction is about one-half of that
for the steady disturbance.

As crpssflow instability is an example of inflectional instability, it is possible to deduce something about
the stability characteristics from the location of the inflection point of the relevant velocity profile. It is not
necessary for this purpose to consider the generalized inflection point of the compressible theory which is
little different from the true inflection point at transonic Mach numbers. The relevant velocity profile is the
one in the direction of ~k. For the most unstable stationary wave (ψ = 84.8◦), this profile has reverse flow,
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and the inflection point occurs almost at the zero velocity point in accordance with the theory of Stuart
(Gregory et al., 1955). Inflectional profiles exist for ψ both greater and less than 84.8◦. The sign of the
mean velocity at the inflection point determines the sign of the frequency (except very near F = 0 because
of the finite Reynolds number). The profiles with ψ > 84.8◦ give the negative frequencies; the profiles with
ψ < 84.8◦ the positive frequencies.

14.3 Streamwise instability

Along with crossflow instability, which is particular to three-dimensional boundary layers, there are also
inflectional and viscous instabilities which are more like those of a two-dimensional boundary layer, but with
modifications due to the crossflow. This type of instability will be called streamwise instability, and it refers
to all instabilities that are not associated with a directional velocity profile of the type of the crossflow and
reverse-flow profiles.

As suction is more effective at controlling streamwise than crossflow instability, only the latter instability
is present over most of the wing chord in the present flow example. The region of streamwise instability starts
at N = 14 (s∗/c∗ = 0.094), according to the compressible theory, and extends to N = 25 (s∗/c∗ = 0.588).
Some stability characteristics at N = 15 (s∗/c∗ = 0.128), where the edge Mach number of 1.24 is close to tits
maximum value, are shown in Fig. 14.4. Figure 14.4a gives the distributions of σmax and F with wave angle
from the incompressible and sixth-order compressible theories. The crossflow instability region (ψ > 80◦)
is not shown. The crossflow (Wmax = −0.0215) has introduced an asymmetry into the distributions, but
otherwise the results resemble what might have been expected from assuming that 2D results could be applied
to 3D boundary layers. The two maxima in the amplification rate of the compressible theory contrast with
the single maximum of the incompressible theory, and are in complete accord with 2D stability theory at
M1 = 1.24.

The reason that Fig. 14.4a resembles the results for a two-dimensional flat-plate boundary layer with no
suction is that the shape factor H at N = 15 is almost the same as for such a boundary layer at the same Mach
number, and the crossflow is not only small, but still in the direction associated with a favorable pressure
gradient. The two inflection points of the directional velocity profiles, which exist for −90◦ < ψ < −60◦, are
unimportant except near ψ = −90◦, because one is located near the wall and the other at the edge of the
boundary layer. Consequently, what Fig. 14.4 shows is viscous instability, just as for a flat-plate boundary
layer at the same Mach number.

The maximum amplification rate with respect to wavenumber is shown in Fig. 14.4b as a function of
frequency for both crossflow and streamwise instability. It is evident that the incompressible theory gives
a totally misleading result as to the importance of streamwise instability at this station. The two maxima
of Fig. 14.4a are shown by two separate curves. The crossflow instability has the same general features as
at N = 4, but with and unstable frequency band only about one-seventh as wide (cf. Fig 14.3). Also the
corresponding ψ are much closer to 90◦ for both positive and negative frequencies: 83.8◦ < ψ < 89.4◦ for
F > 0; 89.4◦ < ψ < 90.4◦ for F < 0. It might also be observed that for ψ = 90◦, the maximum amplification
rate is about one-half of its F = 0 value, as surmised for N = 4.

The term streamwise instability covers such a wide variety of possibilities that it is worthwhile to give
an additional example. Figure 14.5 is the counterpart at N = 23 (s∗/c∗ = 0.513) to Fig. 14.4. At this
station, the crossflow over the inner two-thirds of the boundary layer has reversed, but is even smaller than
at N = 15 (Wmax = 0.0113). The adverse pressure gradient is larger (βh = −0.22), but because the suction
is also larger there is still no inflection point in the streamwise velocity profile.

It is seen from Fig. 14.5a that the waves with ψ < 0 are much more unstable than those with ψ > 0 even
though the maximum crossflow is positive. The reason is that for ψ < −40◦ the directional velocity profiles
have inflection points well out in the boundary layer (e.g., at U = 0.30 for ψ = −70◦). A significant difference
between Fig. 14.5 and Fig. 14.4 is that the smooth σmax curves of the former do not permit a clear distinction
to be made between crossflow and streamwise instability. The frequencies near zero (say, F < 0.04× 10−4)
have the characteristics of crossflow instability (wide band of unstable wavenumbers, narrow band of unstable
angles); the larger frequencies (say, F > 0.12×10−4) have the characteristics of streamwise instability (narrow
band of unstable wavenumbers, wide band of unstable angles). The intermediate frequencies, including the
most unstable, have the characteristics of streamwise instability for a narrow band of small wavenumbers,
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Figure 14.4: Crossflow and streamwise instability at N = 15 (R = 1323); (a) maximum amplification rate
(with respect to frequency) and frequency as functions of wave angle; (b) maximum amplification rate (with
respect to wavenumber) as function of frequency: − ·−, incompressible theory; —, sixth-order compressible
theory; 35◦ swept wing.
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Figure 14.5: Crossflow and streamwise instability at N = 23 (R = 2661). (a) Maximum amplification rate
(with respect to frequency) and frequency as function of wavenumber angle; (b) maximum amplification
rate (with respect to wavenumber) as function of frequency: − · −, incompressible theory; —, sixth-order
compressible theory; 35◦ swept wing.
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Figure 14.6: Amplification rates of seven zero-frequency wave components in forward instability region of
35◦ swept wing with irrotationality condition applied to wavenumber vector: —, incompressible theory; - - -,
sixth-order compressible theory for k1 = 0.35.

and of crossflow instability for a wide band of larger wavenumbers.
The effect of compressibility is large and similar to that at N = 15 (Fig. 14.4) in the streamwise instability

region, and is also a good deal larger in the crossflow instability region than at either N = 4 (Figs. 14.3
and 14.4) or N = 15. Indeed the peak amplification rate of the incompressible theory differs by 27%
from the sixth-order compressible value and the corresponding wave angle by 15◦, whereas the maximum
incompressible amplification rate of the steady disturbances is in error by 40%. The latter difference decreases
further back on the wing as the amplification rate increases (to 14% at N = 35), but is always larger than
in the negative crossflow region on the forward part of the wing.

It is important to note the narrow bandwidth of unstable frequencies in Fig. 14.5b compared to Figs. 14.4b
and 14.3. The largest unstable frequency at N = 23 is only 5.2 kHz, and the most unstable frequency is
2.9 kHz. Consequently, almost all unstable frequencies that exist upstream of N = 23 cannot persist to this
station as amplified waves even when they are kinematically possible.

14.4 Wave amplitude

The wave amplitude rather than the local amplification rate is what is of interest in transition studies. In
this section, the irrotationality condition on ~k will be applied to the calculation of amplitude ratios of single
Fourier components. The SALLY stability code of Srokowski and Orszag (1977) calculates ln(A/A0) by what
is called the envelope method, i.e., by integrating (σg)max along the trajectory defined by the real part of
the group velocity. As a result, the amplitude ratio increases monotonically to the end of hte instability
region. Here, a band of wavenumbers with the same frequency is followed downstream starting at the first
unstable station, N = 3 (s∗/c∗ = 0.0033). The resulting amplification rates for seven initial wavenumbers
with zero frequency are shown in Fig. 14.6 as computed from the incompressible theory. The listed initial
wavenumbers are those at N = 3. For comparison, a portion of the ki = 0.35 curve as computed from the
sixth-order compressible theory is also shown.

For R < 1000, the different initial wavenumbers in Fig. 14.6 act much like different frequencies in a
2D boundary layer. The lower the initial wavenumber, the further downstream is its unstable region. For
R > 1000, a rather different pattern is apparent in Fig. 14.6. The initial wavenumber of the wave component
which has the maximum amplification rate at a given station becomes a slowly varying function of Reynolds
number. In other words, a single Fourier component is nearly the most unstable over a wide range of
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Figure 14.7: ln(A/A0) of six zero-frequency wave components in forward instability region of 35◦ swept
wing with irrotationality condition applied to wavenumber vector and comparison with SALLY code; —,
incompressible theory; - - -, sixth-order compressible theory for k1 = 0.35; − · −, eighth-order compressible
theory for k1 = 0.35.

Reynolds numbers. it is this pattern that prevails in the entire rear crossflow instability region. There the
wave component with ki = 0.35 at N = 21 (R = 2400, s∗/c∗ = 0.419) is the most unstable from R = 2600
to at least R = 3570 (s∗/c∗ = 0.906). Consequently, in this region the procedure we are using here gives the
same result for the amplitude ratio as does the SALLY code.

The ln(A/A0) values that correspond to the amplification rates of Fig. 14.6 are shown in Fig 14.7 for six
Fourier components along with the result given by the SALLY code (computed by Dr. A. Srokowski). The
present method gives a peak in the envelope curve, ln(A/A0)max vs. R, at about R = 1400 (s∗/c∗ = 0.128).
In contrast, the curve from the SALLY code continues to rise to a value of ln(A/A0) = 11.2 at R = 1880
(s∗/c∗ = 0.259). The peak with the irrotationality condition is a consequence of following Fourier components
from a more unstable region to a less unstable region, and can also be encountered in 2D boundary layers
with laminar-flow control.

Two additional curves included in Fig. 14.7 give ln(A/A0) for ki = 0.35 as computed from the sixth- and
eighth-order compressible equations. The peak ln(A/A0) of the latter is about 6.9 compared to 7.8 from
the incompressible theory and 11.2 from the SALLY program. Consequently, the method of integrating the
maximum amplification rate overestimates the peak amplitude ratio by over 70 times.

As both Figs. 14.3 and 14.4b show that a non-zero frequency has the maximum amplification rate for
crossflow instability, it is also a non-zero frequency that gives the maximum amplitude ratio. The possi-
ble importance of these frequencies is, however, counteracted by the narrowing of the unstable frequency
bandwidth in the downstream direction. The results is that at N = 15 the frequency with the maximum
amplitude ratio is the low frequency F = 0.05 × 104 (1.4 kHz), and the peak ln(A/A0) of this frequency is
only 2% larger than for zero frequency. Of course, larger differences than this exist upstream of N = 15
where higher frequencies are still unstable.

at station N = 35 in the rear crossflow instability region, the amplitude ratio of the most unstable
zero-frequency wave component, ki = 0.35, is 6.54 according to the incompressible theory, a result almost
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identical to the SALLY value of n = 6.46. However, compressibility cannot be neglected in this region as it
was in the forward instability region. The sixth-order compressible theory gives ln(A/A0) = 5.25 at N = 35;
thus the incompressible theory overestimates ln(A/A0) by 25%.

Streamwise instability is limited to the region from N = 15 to N = 25 (s∗/c∗ = 0.588) and leads to
smaller amplitude ratios than does crossflow instability. As these waves travel downstream, their wave angle
ψ remains very close (within about 1◦) to its initial value, in contrast to the crossflow disturbances which
are required by the dispersion relation to keep their angles within the narrow band set by the profile angle
εi. According to Fig. 14.7b, F = 0.375 × 10−4 is the most unstable frequency for streamwise instability
at N = 15. However, this and the neighboring unstable frequencies damp out quickly in the downstream
direction. The frequencies which give the largest amplitude ratios are those which are unstable at N = 23
(s∗/c∗ = 0.513), where the largest amplification rates of streamwise instability occur. For example, F =
0.09× 10−4 becomes unstable at N = 21 and has a peak ln(A/A0) of 2.3 at N = 25 for an initial wave angle
of −70◦; F = 0.15 × 10−4 becomes unstable at N = 20 and has a smaller peak at N = 24. Consequently,
the maximum amplitude growth of streamwise-instability waves is only about 1% of that of the crossflow
disturbances. Examples of amplification rates for a wing without suction may be found elsewhere (Mack,
1981).
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Appendix A

Coefficient Matrix of Compressible
Stability Equations

There are 30 non-zero elements of the coefficient matrix ai,j(y) of Eq. 8.11. The Z1 equation has only one
non-zero coefficient:

a12 = 1. (A.1)

The Z2 equation has six non-zero coefficients:

a21 =
iR

µT
(αU + βW − ω) + α2 + β2, (A.2a)

a22 = − 1

µ

dµ

dT
DT, (A.2b)

a23 =
R

µT
(αDU + βDW )− i 1

µ

(
α2 + β2

) dµ
dT

DT

− i1
3

(1 + 2d)
(
α2 + β2

) DT
T
, (A.2c)

a24 =
iR

µ

(
α2 + β2

)
− 1

3
(1 + 2d)

(
α2 + β2

)
γM2

1 (αU + βW − ω) , (A.2d)

a25 =
1

3

1

T
(1 + 2d)

(
α2 + β2

)
(αU + βW − ω)− 1

µ

dµ

dT

(
αD2U + βD2W

)
− 1

µ

d2µ

dT 2
DT (αDU + βDW ) , (A.2e)

a26 = − 1

µ

dµ

dT
(αDU + βDW ) . (A.2f)

The Z3 equation has four non-zero coefficients:

a31 = −i, (A.3a)

a33 =
DT

T
, (A.3b)

a34 = −iγM2
1 (αU + βW − ω) , (A.3c)

a35 =
i

T
(αU + βW − ω) . (A.3d)

The Z4 equation is the only one that requires a lengthy manipulation to derive. With
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E =
R

µ
+ i

2

3
(2 + d) γM2

1 (αU + βW − ω) , (A.4)

the six non-zero coefficients are

a41 = − i

E

[
2

µ

dµ

dT
DT +

2

3
(2 + d)

DT

T

]
, (A.5a)

a42 = − i

E
, (A.5b)

a43 =
1

E

[
−
(
α2 + β2

)
+

2

3
(2 + d)

DT 2

T

1

µ

dµ

dT

+
2

3
(2 + d)

D2T

T
− iR

µT
(αU + βW − ω)

]
, (A.5c)

a44 = − i

E

2

3
(2 + d) γM2

1

[
(αU + βW − ω)

1

µ

dµ

dT
DT+

+αDU + βDW +
DT

T
(αU + βW − ω)

]
, (A.5d)

a45 =
i

E

[
1

µ

dµ

dT
(αDU + βDW )

+
2

3
(2 + d)

(
1

µ

dµ

dT

DT

T
(αU + βW − ω) +

(αDU + βDW )

T

)]
, (A.5e)

a46 =
i

E

2

3
(2 + d) (αU + βW − ω) . (A.5f)

The Z5 equation has only one non-zero coefficient:

a56 = 1. (A.6)

The Z6 equation has six non-zero coefficients:

a62 = −2σ (γ − 1)M2
1

(αDU + βDW )

(α2 + β2)
, (A.7a)

a63 =
Rσ

µ

DT

T
− i2σ (γ − 1)M2

1 (αDU + βDW ) , (A.7b)

a64 = −iRσ
µ

(γ − 1)M2
1 (αU + βW − ω) , (A.7c)

a65 = i
Rσ

µT
(αU + βW − ω) + α2 + β2 − D2T

κ

dκ

dT

− DT 2

κ

d2κ

dT 2
− σ (γ − 1)M2

1

1

µ

dµ

dT

(
DU2 +DW 2

)
, (A.7d)

a66 = − 2

κ

dκ

dT
DT, (A.7e)

a68 = −2σ (γ − 1)M2
1

(αDW − βDU)

(α2 + β2)
. (A.7f)

The Z7 equation has only one non-zero coefficient:

a78 = 1. (A.8)

The Z8 equation has five non-zero coefficients:
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a83 =
R

µT
(αDW − βDU) , (A.9a)

a85 = − 1

µ

dµ

dT

(
αD2W − βD2U

)
− 1

µ

d2µ

dT 2
DT (αDW − βDU) , (A.9b)

a86 = − 1

µ

dµ

dT
(αDW − βDU) , (A.9c)

a87 =
iR

µT
(αU + βW − ω) + α2 + β2, (A.9d)

a88 = − 1

µ

dµ

dT
DT. (A.9e)

In these equations, the ratio of the second to the first viscosity coefficient

d =
λ

µ
(A.10)

is taken to be a constant and equal to 1.2. (Stokes’ assumption corresponds to λ = 0).
In the numerical computations, we use

µ∗ × 105 = 1.458
T ∗3/2

T ∗ + 110.4
, T ∗ ≥ 110.4K

= 0.0693873T ∗, T ∗ < 110.4K

(A.11)

for the viscosity coefficient in cgs units, and

κ∗ = 0.6325
T ∗1/2

1 + (245.4/T ∗) 10−12/T∗ (A.12)

for the thermal conductivity coefficient in cgs units. The Prandtl number σ = c∗pµ
∗/κ∗ is computed as a

function of temperature from µ∗, κ∗, and a constant specific heat of c∗p = 0.24.
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Appendix B

Freestream Solutions of Compressible
Stability Equations

In the freestream U = U1, W = W1, T = 1, µ = 1, κ = 1/σ1, and all y derivatives of mean-flow quantities
are zero. The first six of Eqs. 8.11 can be written as three second-order equations:

D2V1 = b11V1 + b12V2 + b13V3, (B.1a)

D2V2 = b22V2 + b23V3, (B.1b)

D2V3 = b32V2 + b33V3, (B.1c)

where
V1 = Zz, V2 = Z4, V3 = Z5. (B.2)

The three coefficients of Eq. B.1a are

b11 = α2 + β2 + iR (αU1 + βW1 − ω) , (B.3a)

b12 = i
(
α2 + β2

) [
R+

i

3
(1 + d)γM2

1 (αU1 + βW1 − ω)

]
, (B.3b)

b13 = −(1 + 2d)
(
α2 + β2

)
(αU1 + βW1 − ω) . (B.3c)

The two coefficients of Eq. B.1b are

b22 = α2 + β2 − R

E1

[
γM2

1 −
2

3
(2 + d)σ(γ − 1)M2

1 (αU1 + βW1 − ω)

]
, (B.4a)

b23 =
R

E1

[
1− 2

3
(2 + d)σ

]
(αU1 + βW1 − ω) . (B.4b)

where E1 is Eq. A.4 evaluated in the freestream. The two coefficients of Eq. B.1c are

b32 = −i(γ − 1)M2
1σ (αU1 + βW1 − ω) , (B.5a)

b33 = α2 + β2 + iσR (αU1 + βW1 − ω) . (B.5b)

The six solutions of Eqs. B.1 have the form

V (i)(y) = B(i) exp(λiy), (i = 1, 6), (B.6)

where the V (i) are the six three-component solution vectors, the λi are the six characteristic values, and
the B(i) are the six three-component characteristic vectors. Upon substituting Eq. B.6 into Eqs. B.1, the
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characteristic values are found to be

λ1,2 = ∓

{
1

2
(b22 + b33)−

[
1

4
(b22 − b33)

2
+ b23b32

]1/2
}1/2

, (B.7a)

λ3,4 = ∓ (b11)
1/2

, (B.7b)

λ5,6 = ∓

{
1

2
(b22 + b33) +

[
1

4
(b22 − b33)

2
+ b23b32

]1/2
}1/2

, (B.7c)

(B.7d)

where the numbering has been arranged so that the first two of these will correspond to the first two of
Eq. 2.49.

The last two of Eqs. 8.11 give a fourth uncoupled second-order equation

D2Z7 =
[
α2 + β2 + iR (αU1 + βW1 − ω)

]
Z7, (B.8)

with characteristic values
λ7,8 = ∓

[
α2 + β2 + iR (αU1 + βW1 − ω)

]1/2
, (B.9)

which are the same as the characteristic values λ3,4.
The components of the characteristic vector corresponding to λ3 are

B
(3)
1 = 1, B

(3)
2 = 0, B

(3)
3 = 0, (B.10)

and to λ1 and λ5 are,

B
(j)
1 =

b12

(
b33 − λ2

j

)
− b13b32

λ2
j − b11

, (B.11a)

B
(j)
2 = b33 − λ2

j , (B.11b)

B
(j)
3 = −b32. (B.11c)

(B.11d)

The components of the characteristic vectors of the original solutions are:

A
(j)
1 = B

(j)
1 , A

(j)
2 = λjB

(j)
1 , A

(j)
4 = B

(j)
2 ,

A
(j)
5 = B

(j)
3 , A

(j)
6 = λjB

(j)
3 , (j = 1, 6), (B.12)

and the component A
(j)
3 is found from the continuity equation:

λjA
(j)
3 = −iB(j)

1 − i (αU1 + βW1 − ω)
(
γM2

1B
(j)
2 −B(j)

3

)
. (B.13)
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Tollmien, W. 1929 Über die Entstehung der Turbulenz, Nachr. Ges. Wiss. Göttingen, Math.-phys. Klasse,
pp. 21–44.

Tollmien, W. 1935 Ein allgemeines Kriterium der Instabilität laminarer Geschwindigkeitsverteilungen, Nachr.
Ges. Wiss. Göttingen, Math.-phys. Klasse, Vol. 50, pp. 79–114.

Van Ingen, J.L. 1956 A Suggested Semi-Empirical Method for the Calculation of the Boundary Layer Tran-
sition Region, Univ. of Tech., Dept. Aero. Eng., Report VTH-74, Delft, Holland.

Van Stijn, T.L. and Van De Vooren, A.I. 1982 An Accurate Method for Solving the Orr-Sommerfeld Equation,
J. Eng. Math., Vol. 14, pp. 17–26.

Van Stijn, T.L. and Van De Vooren, A.I. 1983 On the Stability of Almost Parallel Boundary-Layer Flows,
Computers and Fluids, Vol. 10, pp. 223–241.

Wasow, W. 1948 The Complex Asymptotic Theory of a Fourth Order Differential Equation of Hydrodynam-
ics, Ann. Math. (2), Vol. 49, pp. 852–871.

Wazzan, A.R., Okamura, T.T. and Smith, A.M.O. 1968a Spatial and Temporal Stability Charts for the
Falkner-Skan Boundary-layer Profiles, Report No. DAC-67086, McDonnell-Douglas Aircraft Co., Long
Beach, CA.

Wazzan, A.R., Okamura, T.T. and Smith, A.M.O. 1968b The Stability of Water Flow over Heated and
Cooled Flat Plates, J. Heat Transfer, Vol. 90, pp. 109–114.

Wazzan, A.R., Taghavi, H. and Keltner, G. 1984 The Effect of Mach Number on the Spatial Stability of
Adiabatic Flat Plate Flow to Oblique Disturbances, Phys. Fluids, Vol. 27, pp. 331–341.

White, F.M. 1974 Viscous Fluid Flow, McGraw-Hill, N.Y.

Wilkinson, S.P. and Malik, M.R. 1983 Stability Experiments in Rotating-Disk Flow, AIAA Paper No. 83-
1760.
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